Final Project Report

Carmel Pe’er Orion Yang

July 27, 2023

For a discrete random variable X if the distribution p(z) is known, the
informational entropy is defined by

H(X) == p(x)log(p(x)).

Essentially, the entropy is an average of how surprising a particular value of X
is based on the distribution p(z). [1] However, the entropy of systems where
p(z) is unknown is more difficult to calculate. In such cases, it has been shown
that if one divides a 1D dataset z;;—; ,, into two segments, a sample of length
N and a dictionary of length M, and starting from random positions find the
longest subsegments in the sample which match subsegments in the dictionary.
We call this algorithm the pattern-matching (PM) algorithm.

Eventually, taking the average length of each of these segments (I}, the
entropy can be calculated with the following equation:

_ logy M
{0)

The inspiration for the PM algorithm derives from Lempel-Ziv 77 Factorization
(LZ77), a data compression algorithm. One can show that LZ77 is asymptoti-
cally optimal, as in, the length of the compressed file gives the entropy. [2, 3]
Based on this knowledge, one can prove that the PM algorithm and formula
converge asymptotically to the entropy of a system. The difference between

H

Sample Dictionary
i— | — Ir
~EEEN
f N M {

Figure 1: The input series is split into two segments: a sample of length N and
a dictionary of length M. A window of size one is randomly placed within the
sample, and it grows until a match in the dictionary can no longer be found.
The length of the longest match for this window is recorded as [; and added to
the list [The process is repeated multiple times to find other longest matches,
denoted as Iy, etc., which are also included in the list [.

the PM algorithm and LZ77 is that the latter is full compression while the
former only needs to accumulate enough lengths for an accurate estimate of
the mean. Furthermore, the PM algorithm can be adjusted by simply revers-
ing the dictionary to calculate the cross entropy of the system and its reverse.
Then, by subtracting the entropy from the cross entropy, one obtains the Kull-
back—Leibler divergence (KLD) of a system and its reverse. The KLD can be
used as a measure of the time reversal symmetry of the data which reveals the
presence of any forcing in the system. We also call the KLD the entropy pro-
duction when the distribution of the dictionary, ¢, is the reverse of p. Finally,
note that this algorithm can be applied to data in higher dimensions but due
to time constraints, our project focused only on 1D cases.

This summer, we implemented the PM algorithm in four different ways and
applied it to neuron data. Two of the implementations were for discrete data and
the other two were for continuous data. In each case, one of the implementations
used calculations only in real space while the other used calculations in the
Fourier space. Eventually, we used the discrete implementations to analyze
spike train data from the first and second visual cortices (V1, V2) of various
animals. Spike trains are data recorded based on neuron activation in response
to stimuli, which are often transformed into discrete binary time series. [4]
Through our analysis, we found a positive linear relationship between the firing
rate of a neuron and its entropy production.

Theoretical and Measured Entropy for Various Input Lengths Entropy and Entropy Production for a 3 State Markov Chain

o 1.00 -
2098 £ [teoreticn
@ 0.]
S §°7 o measures .
20.96 s .
8 §
£o% o Measured 5 05 06 07 08 09 10
w X . . . X
0.92 ® Theory 10
Error 2
Sos
-0.02 2 — theoretical
“ o measured
00
-0.04 05 06 07 0.8 09 1.0
0.4 oo + o+ 4+ + 4
+
0.06 502
&
-0.08 004 + FHH
1000 5000 10000 ~ 50000 100000 300000 05 055 06 065 07 075 08 08 09 095
Input Length Transition probabiy (p — @ — 3 ~)

(a) (b)

Figure 2: Plots of theoretical and measured entropy for binary Bernoulli se-
quences and simple 3-state Markov Chains. Figure 2a shows theoretical entropy,
measured entropy, and error calculated for increasing sequence length. Figure
2b shows theoretical entropy, measured entropy, theoretical entropy production,
and measured entropy production and error calculated for increasing bias in un-
derlying distribution of Markov sequence We see strong agreement between the
theoretical and measured quantities.

The first implementation we built was the most simple, acting on discrete
data in real-space. We tested it on various sequences with known entropy such
as Bernoulli, Poisson, and a simple 3-state Markov Chains. [5] Figure 2 shows

two plots comparing the calculated and theoretical entropy of Bernoulli and
Markov. In Figure 2a, as the length of the sequence increases, the error decreases
asymptotically to 0. This is expected because the bound the entropy estimator
is asymptotically exact at infinite length sequences. In Figure 2b, we see that the
measurement for entropy production also matches theoretical calculations [5].
The finite-size error increases as the distribution becomes more biased because
the bias makes it less likely that the matching segments are exemplary of the
entire sequence.

The next implementation used calculations in the Fourier space to find
matches. Rather than iterate through the dictionary to find an exact match
we can transform the dictionary and the sample to Fourier space with a Fast
Fourier Transform (FFT) and compute the cross correlation by simply multiply-
ing the sample by the conjugate of the dictionary. Once normalized, the cross
correlation provides a quality value between 0 and 1 which can be compared to
some threshold to find matches. Initially we found little sensitivity between the
threshold pick and final entropy value but in future work we hope to verify this
observation formally. While using a FFT to find matches is more expensive in
the 1D discrete case, this implementation was useful practice for cases where
using a FFT is faster or even necessary such as continuous cases or cases in
higher dimensions.

Find the length of the longest match /;

Approach 1: Exact match Approach 2: Cross correlation
[— —_— i
sample 9T 1 [o [o [0t sample AT 1 [[[+] 723332» 1l ofofo]o]o
iy by
Dictionaryl 1 [1 [+ [+ [4 1 [0 m Dictionaryl 1 [+ [+ [1 [1414 m

N
[0 Fourier Space

F = F{sample} G = F{dictionary}
Cross correlation= Fo G

Figure 3: The real space PM algorithm searches for exact matches by exhaus-
tively placing the sample segment in all positions within the dictionary. In
contrast, FFT efficiently computes cross-correlations between the sample seg-
ment /; and the dictionary in Fourier space.

For the continuous cases, the data we tested on was systems of N hard rods
of constant length ¢ living on some larger length L. These systems are char-
acterized by some density ¢ = % A diagram of such a system is included in
Figure 4a. These systems were of interest because their entropy is known ana-
lytically. While not generally possible, a real space version of the PM algorithm
for hard rods. By intentionally picking the centers of rods as starting points,
we know that the only mismatch between the sample segment and dictionary
segment could be at the start of another rod. Using some error tolerance, €, we

sample: | [& | [®=a | [|
—

.) N Fr ld — | < €
T] — EE Eadilie
i Dictionary: | [a8 | [&f | [eds | |
T ! t+d!
‘ Z+d‘}_1
(a)
(b)

Figure 4: Figure 4a shows an example of an L length hard rod system with N
rods of length ¢. Figure 4b shows a diagram of real space pattern matching on
continuous hard rods. Starting from center z; in the sample, we find that the
distance between x7 and xf,; is close enough to the distance between some x?
and x?_H in the dictionary. We try to grow the match to the next center x°¢ + 2
but find that it is not close enough to the difference between x? and x? o

matched segments based on distances between rods. We then built an imple-
mentation using the a non-uniform fast Fourier transform (NUFFT) that can
be more generally applied to continuous data. Due to time constraints, we were
unable to fully study this implementation.

We investigate the time reversibility of neuron activity using spike trains
from V1 and V2 neurons of anesthetized macaques exposed to a grating stimulus
[4]. Time reversal symmetry is quantified using the KLD which is calculated by
subtracting the self entropy of spike train from the cross-entropy between spike
trains and their reversed version. To explore if reversibility is correlated with
neuron activity (related to firing rate) or not, we plotted KLD vs. firing rate
for all the neurons in different areas. Firing rate is defined as

ny’
Ve = T)

where n;” is the spike count within a time window T , representing average
spike frequency during trial k. Neurons are assumed to behave similarly under
different stimuli. We compute average KLD separately for V1 and V2 neurons
across all trials and observe a positive linear relationship between KLD and firing
rate. This relationship holds when KLD is averaged across the same stimulus
type. These findings suggests that higher firing rates lead to less reversible
dynamics, indicating stronger correlations among the more frequent spikes, a
fact hitherto unreported in neuroscience literature.

Future work on this project includes verifying our observations from the
neural data and checking if a relationship between firing rate and entropy pro-
duction is present in any other animals. We have already begun this step and
have already found similar relationships. Additionally, we are curious about
whether this relationship is also observable in any other areas of the brain such
as deeper visual cortices. We would also like to continue work on the contin-
uous implementations of the algorithm in both real and Fourier space. Given
the time frame of this project, we were unable to analyze these to the same

Averaged SE, CE, KLD Across All Trials, V1 Averaged SE, CE, KLD Across All Trials, V2

0.12 § 0.12 |
0.10 4 0.10
2 2
9 0.08 q ® Avg Self Entropy © 0.08 ® Avg Self Entropy
€ —— corresponding Bernoulli £ —— corresponding Bernoulli
& 0,06 _ W 0,06 4 _
% - y=0.0000x+0.0179 ‘% y=-0.0000x%+0.0179
0,04 ' 0.04 4
0.02 | CEEEEERBSNNG - GBO G G 0.02 | ene@e o &
e R v ; v v T
0 20 40 60 80 o] 10 20 30 40 50
@ Neuron:30,Firing Rate:91.439 = . @ Neuron:27,Firing Rate:54.659 i
7 031 ® Avg Cross Entropy Pt 2 02071 o Avg Cross Entropy
S y=0.0038x+0.0188 o £ 15/ ~ y=0.0038x+0.0168
= - €
5 0.2 =f fir
] o 2 010
e 2 °
S o1 & S _
0.05 q ’..
T T T T T T T T T T T
0 20 40 60 80 o] 10 20 30 40 50
0zl ® Ao = . 0201 ® AvgKLD -
- y=0.0038x+0.0009 Pt e y=0.0038%-0.0011
LES 0.15
o 024 .f' a
2) g 0.10 4 _
N /" 005 i
'..'
001 T T T T T 0.00 1 T T T T T T
0 20 40 60 80 o 10 20 30 40 50
Firing Rate Firing Rate
(a) Neural Activity in V1 (b) Neural Activity in V2

Figure 5: The red line corresponds to the entropy of a Bernoulli distribution
with the same proportion of Os and 1s as the spike train. As anticipated, neurons
exhibit lower self-entropy compared to Bernoulli distributions because the latter
assumes independence between symbols, representing the most random scenario.
The neurons’ lower self-entropy implies stronger correlations in the spike train
data during the experimental period.

extent as the discrete implementations. More work to verify their accuracy and
parameter sensitivity is an important future step. Eventually, this algorithm
should be implemented and studied in higher dimensions.

References

[1] J. V. Stone, Information Theory: A Tutorial Introduction. Sheffield, UK:
Sebtel Press, first edition ed., 2015.

[2] J.Zivand A. Lempel, “Compression of individual sequences via variable-rate
coding,” IEEE Transactions on Information Theory, vol. 24, pp. 530-536,
Sept. 1978.

[3] S. Martiniani, “The other side of entropy,” Nov. 2022.

[4] W. Gerstner, W. M. Kistler, R. Naud, and L. Paninski, Neuronal dynamics:
from single neurons to networks and models of cognition. Cambridge, United
Kingdom: Cambridge University Press, 2014.

[5] S.Ro, B. Guo, A. Shih, T. V. Phan, R. H. Austin, D. Levine, P. M. Chaikin,
and S. Martiniani, “Model-free measurement of local entropy production and
extractable work in active matter,” Phys. Rev. Lett., vol. 129, p. 220601, Nov
2022.

Appendix

The proof behind the PM algorithm shows that given a list of maximum length
matching segments, the probability of each length should follow a Gompertz (or
truncated Gumbel) distribution. Throughout the summer we used this fact to
investigate the performance of our implementations. In Figure 6 we see strong

Distribution of [0.5, 0.5]

® | max

0.25
—— Gompertz pdf

0.20 A

—~ 0.154

P(Imax

0.10 A

0.05 A

0.00 A

0 5 10 15 20
Imax

Figure 6: Probability of each maximum length measured by PM algorithm on a
[0.5, 0.5] Bernoulli sequence. The probabilities almost perfectly match up with
the Gompertz PDF.

agreement between the calculated probabilities and those from the Gomperts
PDF. This aligns with the low error observed between the PM calculated entropy
and the theoretical entropy of a Bernoulli sequenced governed by a [0.5, 0.5]
distribution.

Another time we utilized these distributions was when working on the con-
tinuous implementations. One challenge was that with computers there is still

some level of discretization. Even if this discretization is very fine, it means that
the exact value calculated by the PM algorithm will be inaccurate. However, we
can still observe the curve of calculated entropy by ¢ and compare that to the
shape of the theoretical entropy by ¢. Comparing these curves can be difficult
because the PM algorithm performs differently for different ¢p. We were able to
observe this by plotting the Kernel Density Estimator of the list of matching
lengths found and a truncated Gumbel distribution with the same mean and
variance.

IMax distribution at phi = 0.1 IMax distribution at phi = 0.5

0.4 ‘\

0.0 0.2 0.4 0.6 0.8 —TT KDE 000 025 050 075 100 125 150 17— KDE
Imax —— Gompertz pdf Imax —— Gompertz pdf

(a) (b)

IMax distribution at phi = 0.9

0.175

0.150

0125

0.100

P(Imax)

0.075

0.050

0.025

0 2) 6 8 — KDE
Imax —— Gompertz pdf

Figure 7: These show the various maximum length segment distributions com-
pared to a Gompertz pdf with the same mean and variance. In theory, if the
algorithm is unbiased, the distributions should match. We see that they are
more similar at higher phi but do not match exactly.

Based on the graphs in Figure 7 we are able to observe that the algorithm
likely performs better at higher phi but is nowhere near agreement at any phi.
There are several possible sources of error. As previously stated, the PM esti-
mate is asymptotically exact at infinite length sequence so finite IV and finite
number of nodes used for the NUFFT introduces some error. Additionally, be-
cause this version of the continuous implementation starts all matches at rod
centers, there is some bias due to correlations between starting points. Future

work with the Fourier space continuous implementation seeks to minimize the
impact of the finite effects and correlation bias.

