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Clustering with General Costs
A Digression from “Factor Discovery Through Optimal Transport”



The Roadmap
✦ Clusters as Discrete Factors


✦ Relaxing The Problem to k-Means


✦ k-Means: The Standard Algorithm


✦ k-GenCenters: An Extension of k-Means to General Costs

✦ Introduce k-Medians

✦ k-Means vs k-Medians

✦ Improving initialization

✦ Must-link constraints



We seek factors  and a map  that solve 


.


                                                                                                                        

z y = T(x, z)

max
z { min

y=T(x,z) ∫ c(x, y)ρ(x |z)γ(z) dx dz s . t . y ⊥ z}
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We seek factors  and a map  that solve 
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In the case of a discrete-valued , a natural relaxation of the independence condition is that
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We seek factors  and a map  that solve 


.


Premises of relaxation:

1)  


          2)  


We seek  that solve the data-driven formulation,


,


where  is a set containing the identities of points attributable to the class .

z y = T(x, z)

max
z { min

y=T(x,z) ∫ c(x, y)ρ(x |z)γ(z) dx dz s . t . y ⊥ z}
y = y(z) ∀ z
c(x, y) = ∥x − y∥2

Ik

max
Ik {

p

∑
k=1

[Ik] ∥y − x(zk)∥2}
Ik zk
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We seek  that solve the data-driven formulation,


.


Since  and since


                                                                                                                                             ,


our problem is equivalent to


.

Ik

max
Ik {

p

∑
k=1

[Ik] ∥y − x(zk)∥2}
y = x

min
Ik

p

∑
k=1

∑
i∈Ik

∥xi − x(zk)∥2
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Given a set of numbers , the arithmetic mean is 
{xi ∈ ℝ}N
i=1

x =
1
N

N

∑
i=1

xi
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Given a set of numbers , the arithmetic mean is 





                        ,


which, performed component-wise with vectors , is precisely the centroid from k-Means.


In fact, our relaxed, data-driven optimization problem is equivalent to k-Means.


{xi ∈ ℝ}N
i=1

x =
1
N
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= argmin
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the standard algorithm
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Coming To A Repository Near You…
k-GenCenters



An Extension of k-Means to General Costs

The k-GenCenters module… 
• is styled after sklearn.cluster.KMeans

• has multiple initialization options, including kGenCenters++

• can perform variations on k-Means using 

✦ Any Lp norm  

✦ Any power of the Euclidean distance  
✦ Any future cost functions contributed by the community 

• can generate Voronoi diagrams

c(x, ̂x) = (
D

∑
d=1

|xd − ̂xd |p )
1
p

c(x, ̂x) = ∥x − ̂x∥n
2

k-GenCenters



An Extension of k-Means to General Costs
k-GenCenters

k-Means

k-Medians



An Extension of k-Means to General Costs
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k-Medians
A refresher on the median

Given a set of numbers , the median is 
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{xi ∈ ℝ}N
i=0

Median = x
N
2

= argmin
̂x

N

∑
i=0

|xi − ̂x |
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Naïve k-Medians finds the component-wise medians of vectors , solving
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k-Medians
A refresher on the median

Given a set of numbers , the median is 




                                           .


Naïve k-Medians finds the component-wise medians of vectors , solving


.


We want the more natural “geometric median”:


{xi ∈ ℝ}N
i=0

Median = x
N
2

= argmin
̂x

N

∑
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|xi − ̂x |

xi

argmin
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∑
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∥xi − ̂x∥1
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∑
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∥xi − ̂x∥2



k-Means vs k-Medians
Performance with outliers
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Performance on real-world datasets



k-Means vs k-Medians
A Performance Comparison

Average Accuracy of k-Means and k-Medians (over 100 trials)



Improving Initialization

Forgy


•  Initialize the centers randomly


Random Partition 

•  Initialize the assignments of the data points randomly 

k-Means++ (improved Forgy) 

•  Initialize the centers


•  Incentivize distance from existing centers


•  ℙ(zk = xi) =
min
zj<k

∥xi − zj∥2

∑N
w=1 min

zj<k
∥xw − zj∥2



Improving Initialization

Forgy


•  Initialize the centers randomly


Random Partition 

•  Initialize the assignments of the data points randomly 

k-Means++ (improved Forgy) 

•  Initialize the centers


•  Incentivize distance from existing centers


•  ℙ(zk = xi) =
min
zj<k

∥xi − zj∥2

∑N
w=1 min

zj<k
∥xw − zj∥2

k-GenCenters++ 
•  Incentivize a custom cost from existing centers


•  ℙ(zk = xi) =
min
zj<k

c(xi, zj)

∑N
w=1 min

zj<k
c(xw, zj)



Improving Initialization
Breast Cancer Dataset: 

Accuracies of Various Initializations (avg. over 100 trials)



Must-link Constraints
A form of semi-supervised clustering

Points known to share a factor (e.g. belonging to the same person) are “must-link”.
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Must-link Constraints
A form of semi-supervised clustering

Points known to share a factor (e.g. belonging to the same person) are “must-link”. 
 
At every assignment step, for every set of must-link identities , we assign the whole set to


.


By this approach,

• the centers may be more robust against local minima 

• the algorithm can be expected to converge faster


✦ Further speedups may be accessible using a weighted surrogate


Ip

argmin
z ∑

i∈Ip

c(xi, z)
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