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4 Clusters as Discrete Factors

+ Relaxing The Problem to k-Means

4+ k-Means: The Standard Algorithm

4+ k-GenCenters: An Extension of k-Means to General Costs

+ Introduce k-Medians
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+ Improving initialization

+ Must-link constraints



Clusters as Discrete Factors

A relaxation of the factor discovery problem

We seek factors z and a map y = 71(x, z) that solve

max{ min Jc(x,y)p(x\z)y(z)dxdz S.t. ylz}.

Z y=1(x,z)

Tabak, E. G. (2023, June 7). Factor Discovery Through Optimal Transport [Draft].
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A relaxation of the factor discovery problem

We seek factors z and a map y = 71(x, z) that solve

max{ min Jc(x,y)p(x\z)y(z)dxdz S.t. yJ_z}.

Z y=T(x,2)
In the case of a discrete-valued z, a natural relaxation of the independence condition is that
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o .2 °c
AN L
PR 1 2 o l
R o

Yang, H., & Tabak, E. G. (2020). Conditional Density Estimation, Latent Variable Discovery and Optimal Transport.
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Clusters as Discrete Factors

A relaxation of the factor discovery problem

We seek factors z and a map y = 71(x, z) that solve

max{ min Jc(x,y)p(x\z)y(z)dxdz S.t. ylz}.

Z y=1(x,2)
Premises of relaxation:

) y=yY2)Vz
2) c(x,y) = |lx—y|°

We seek [, that solve the data-driven formulation,

%
max { D L1y - )_C(Zk)Hz}’
¢ k=1

where [ is a set containing the identities of points attributable to the class z;.

Tabak, E. G. (2023, June 7). Factor Discovery Through Optimal Transport [Draft].
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We seek [, that solve the data-driven formulation,
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Clusters as Discrete Factors

A relaxation of the factor discovery problem

We seek [, that solve the data-driven formulation,

{ Z L 1]y — X(Zk)Hz}
k
Since y = X and smce

ZZHQ: — Z(2k) || —I-Z[Ik] |Z — Z (2 H —ZHQC —:E”

=1 1€,

our problem is equivalent to

P

Tabak, E. G. (2023, June 7). Factor Discovery Through Optimal Transport [Draft].



Clusters as Discrete Factors

A refresher on the arithmetic mean

Given a set of numbers {xi = R}é\il, the arithmetic mean is

1% |
X=— ) x'
Ni=1

Tabak, E. G. (2023, June 7). Factor Discovery Through Optimal Transport [Draft].



Clusters as Discrete Factors

A refresher on the arithmetic mean

Given a set of numbers {xi = R}é\;l, the arithmetic mean is
1 &
=y
N
=1

N
= argminz Xt — %],
X =l

which, performed component-wise with vectors xi, Is precisely the centroid from k-Means.

In fact, our relaxed, data-driven optimization problem is equivalent to k-Means.

P

min ) ) I = Xz’

Tabak, E. G. (2023, June 7). Factor Discovery Through Optimal Transport [Draft].



k-Means

the standard algorithm

Naive k-means clustering
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Mroavi. (2023). Naive K-Means Implementation in Julia. Julia Forem. https://forem.julialang.org/mroavi/naive-k-means-39dk
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the standard algorithm

Naive k-means clustering

40}
O
35}t
@ O
Q@ 00
O O
30 OO O
O
25}
@)
20}

 $3,°35000°8°°

Mroavi. (2023). Naive K-Means Implementation in Julia. Julia Forem. https://forem.julialang.org/mroavi/naive-k-means-39dk




k-Means

the standard algorithm
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k-Means

the standard algorithm

Naive k-means clustering
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k-Means

the standard algorithm

Naive k-means clustering
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k-GenCenters
Coming To A Repository Near You...



k-GenCenters

An Extension of k-Means to General Costs

The k-GenCenters module...
* Is styled after sklearn.cluster.KMeans
» has multiple initialization options, including kGenCenters++

» can perform variations on k-Means using
D

+ Any L” norm c(x, X) = (Z | X, — X, \p)%
d=1

+ Any power of the Euclidean distance c(x, X) = [|x — X||5

+ Any future cost functions contributed by the community

* can generate Voronol diagrams



k-GenCenters

An Extension of k-Means to General Costs

k-Means

k-Medians
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k-GenCenters

An Extension of k-Means to General Costs

Blobs with Bleed Separated Blobs Varied Scale Anisotropic Moons Uniform

manhattan
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k-Medians

A refresher on the median

Given a set of numbers {xi S IR}?;O, the median is
. N
Median = x2

N
= argminz | x! —X|.

A 1=0
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Naive k-Medians finds the component-wise medians of vectors X!, solving
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argmin Z |x! = X[];-

A 1=0
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k-Medians

A refresher on the median

Given a set of numbers {x' € IR}?;O, the median is

. N
Median = x2
N
= argminz | x! —X|.
X =0

Naive k-Medians finds the component-wise medians of vectors X!, solving

N .
argmin Z |x! = X[];-

A 1=0

We want the more natural “geometric median™;

N .
argmin Z |x! = X||,

A 1=0



k-Means vs k-Medians

Performance with outliers

Robustness to Outliers: k-Means and k-Medians

True Labels k-Means k-Medians
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k-Means vs k-Medians

Performance with outliers

Robustness to Outliers: k-Means and k-Medians

True Labels k-Means k-Medians
®
N
@
—
-
el
O
() o
L o °
1202 o5
oVe 000} %8 8
o.:o s .,:o "::o o o..:o.’
b ..of i ‘oo :Q' :.:Q
“.:0. o ‘Jo"‘ 0 . \&0. 0y
* %) %) R
’ : Accuracy: ‘ Accuracy:
50.5% 93.2%

Feature 1




k-Means vs k-Medians

Performance on real-world datasets

Iris dataset (4 dimensions, 3 classes)
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k-Means vs k-Medians

Performance on real-world datasets

Seeds dataset (7 dimensions, 3 classes)




k-Means vs k-Medians

Performance on real-world datasets
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k-Means vs k-Medians

Performance on real-world datasets

Glass dataset (9 dimensions, 6 classes)
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k-Means vs k-Medians

Performance on real-world datasets

Wine dataset (13 dimensions, 3 classes)




k-Means vs k-Medians

Performance on real-world datasets
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k-Means vs k-Medians

A Performance Comparison

Average Accuracy of k-Means and k-Medians (over 100 trials)

k-Means k-Medians
Iris 79.57% 78.73%
Seeds 91.71% 90.82%
E. Coli 74 .47% 74 .85%
Glass 44 84% 42.29%
Wine 94.31% 95.82%
Breast Cancer 90.80% 91.62%




Improving Initialization

Forgy
- Initialize the centers randomly
Random Partition

- Initialize the assignments of the data points randomly

k-Means++ (improved Forgy)
* |nitialize the centers

» Incentivize distance from existing centers

min||x! — z||?
nin(|x' — 5|

. |]:D(Zk — xi) —




Improving Initialization

Forgy
- Initialize the centers randomly
Random Partition

- Initialize the assignments of the data points randomly

k-Means++ (improved Forgy) k-GenCenters++
. |nitialize the centers * Incentivize a custom cost from existing centers
- Incentivize distance from existing centers I?l,fl c(x', 7))
. »
: i 2 * Pz, =x) =
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| I?.ngx ll Y. _ min c(x"*,z)

* Pl =) = - w=l"zq




Improving Initialization

Breast Cancer Dataset:
Accuracies of Various Initializations (avg. over 100 trials)

k-Means k-Medians
Forgy 90.80% 91.62%
Random Partition 90.73% 91.61%
++ 90.94% 91.64%

i 90.90% 13
3 \ ;

Euclidean ++

Euclidean/2 ++ 90.94% 91.65%

Euclidean3 ++
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Must-link Constraints

A form of semi-supervised clustering

Points known to share a factor (e.g. belonging to the same person) are “must-link”.



Must-link Constraints

A form of semi-supervised clustering

Points known to share a factor (e.g. belonging to the same person) are “must-link”.

At every assignment step, for every set of must-link identities Ip, we assign the whole set to

argmin 2 c(x', 7).
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Must-link Constraints

A form of semi-supervised clustering

Points known to share a factor (e.g. belonging to the same person) are “must-link”.

At every assignment step, for every set of must-link identities Ip, we assign the whole set to
argmin 2 c(x, 7).
< i€l
By this approach,
» the centers may be more robust against local minima

» the algorithm can be expected to converge faster
+ Further speedups may be accessible using a weighted surrogate
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