Clustering with General Costs A Digression from "Factor Discovery Through Optimal Transport"

Given by Daniel Wang on 07/27/2023 Mentors: Esteban G. Tabak, Andrew Lipnick, Nina Mortensen, Ryan Shìjié Dù

The Roadmap

- Clusters as Discrete Factors
 - Relaxing The Problem to k-Means
- k-Means: The Standard Algorithm
- k-GenCenters: An Extension of k-Means to General Costs
 - Introduce k-Medians
 - k-Means vs k-Medians
 - Improving initialization
 - Must-link constraints

We seek factors *z* and a map y = T(x, z) that solve $\max_{z} \left\{ \min_{y=T(x,z)} \int c(x,y)\rho(x\,|\,z)\gamma(z)\,dx\,dz \quad \text{s.t.} \quad y\perp z \right\}.$

We seek factors *z* and a map y = T(x, z) that solve $\max_{z} \left\{ \min_{y=T(x,z)} \right| c(x,y)\rho(x)$

In the case of a discrete-valued z, a natural relaxation of the independence condition is that $\overline{y} = \overline{y}(z) \ \forall \ z$

$$x|z)\gamma(z) dx dz$$
 s.t. $y \perp z$ $\}$.

We seek factors z and a map y = T(x, z) that solve $\max_{z} \begin{cases} \min_{y=T(x,z)} \int c(x, y)\rho(x) \\ e^{-T(x,z)} \int c(x, y)\rho(x) \end{cases}$

Premises of relaxation:

1) $\overline{y} = \overline{y}(z) \forall z$

 $\max_{z} \left\{ \min_{y=T(x,z)} \int c(x,y)\rho(x \mid z)\gamma(z) \, dx \, dz \quad \text{s.t.} \quad y \perp z \right\}.$

We seek factors *z* and a map y = T(x, z) that solve $\max_{z} \left\{ \min_{y=T(x,z)} \int c(x,y)\rho(x \mid z)\gamma(z) \, dx \, dz \quad \text{s.t.} \quad y \perp z \right\}.$

Premises of relaxation:

1) $\overline{y} = \overline{y}(z) \forall z$ 2) $c(x, y) = ||x - y||^2$

We seek factors *z* and a map y = T(x, z) that solve $\max_{z} \left\{ \min_{y=T(x,z)} \int c(x,y)\rho(x\,|\,z)\gamma(z)\,dx\,dz \quad \text{s.t.} \quad y\perp z \right\}.$

Premises of relaxation:

1) \overline{y}

2) *C*(

We seek I_k that solve the data-driven formulation,

 $\max_{I_k} \left\{ \sum_{k=1}^{p} L \right\}$

where I_k is a set containing the identities of points attributable to the class z_k .

$$\overline{y} = \overline{y}(z) \forall z$$

 $(x, y) = ||x - y||^2$

$$[I_k] \|\overline{y} - \overline{x}(z_k)\|^2 \bigg\},$$

We seek I_k that solve the data-driven formulation,

$$[I_k] \|\overline{y} - \overline{x}(z_k)\|^2 \bigg\}.$$

We seek I_k that solve the data-driven formulation,

Since $\overline{y} = \overline{x}$ and since $\sum_{k=1}^{p} \sum_{i \in I_{k}} \left\| x^{i} - \overline{x}(z_{k}) \right\|^{2} + \sum_{k=1}^{p}$

our problem is equivalent to

 $\min_{I_k} \sum_{k=1}^p \sum_{i \in I}^p$

$$\max_{I_k} \left\{ \sum_{k=1}^p [I_k] \| \overline{y} - \overline{x}(z_k) \|^2 \right\}.$$

$$\sum_{k=1}^{n} \|\bar{x} - \bar{x}(z_k)\|^2 = \sum_{i=1}^{n} \|x^i - \bar{x}\|^2$$

$$\sum_{\substack{\in I_k}} \|x^i - \overline{x}(z_k)\|^2.$$

Clusters as Discrete Factors A refresher on the arithmetic mean

Given a set of numbers $\{x^i \in \mathbb{R}\}_{i=1}^N$, the arithmetic mean is

$$\overline{x} = \frac{1}{N} \sum_{i=1}^{N} x^{i}$$

Clusters as Discrete Factors A refresher on the arithmetic mean

Given a set of numbers $\{x^i \in \mathbb{R}\}_{i=1}^N$, the arithmetic mean is

 $\overline{x} =$

which, performed component-wise with vectors x^{i} , is precisely the centroid from k-Means.

In fact, our relaxed, data-driven optimization problem is equivalent to k-Means.

 I_k k=1

$$= \frac{1}{N} \sum_{i=1}^{N} x^{i}$$

= $\operatorname{argmin}_{\hat{x}} \sum_{i=1}^{N} |x^{i} - \hat{x}|^{2}$,
 x^{i} is precisely the control

$$\sum_{k \in I_k} \|x^i - \overline{x}(z_k)\|^2$$

k-GenCenters Coming To A Repository Near You...

k-GenCenters

An Extension of k-Means to General Costs

The k-GenCenters module...

- is styled after sklearn.cluster.KMeans
- has multiple initialization options, including kGenCenters++
- can perform variations on k-Means using

Any L^p norm
$$c(x, \hat{x}) = \left(\sum_{d=1}^{D} |x_d - \hat{x}_d|^p\right)$$

Any power of the Euclidean distance $c(x, \hat{x}) = ||x - \hat{x}||_2^n$

Any future cost functions contributed by the community

can generate Voronoi diagrams

 $\Big) \frac{1}{p}$

k-GenCenters An Extension of k-Means to General Costs

k-Means

k-Medians

k-GenCenters An Extension of k-Means to General Costs

Given a set of numbers $\{x^i \in \mathbb{R}\}_{i=0}^N$, the median is Med

Given a set of numbers $\{x^i \in \mathbb{R}\}_{i=0}^N$, the median is Med

Naïve k-Medians finds the component-wise medians of vectors x^i , solving

 $\mathop{\mathrm{argmin}}_{\hat{x}}$

ian is Median = $x^{\frac{N}{2}}$ = $\underset{\hat{x}}{\operatorname{argmin}} \sum_{i=0}^{N} |x^i - \hat{x}|.$

$$\sum_{i=0}^{N} \|x^{i} - \hat{x}\|_{1}.$$

Given a set of numbers $\{x^i \in \mathbb{R}\}_{i=0}^N$, the median is Med

Naïve k-Medians finds the component-wise medians of vectors x^i , solving

 $\mathop{\mathrm{argmin}}_{\hat{x}}$

ian is Median = $x^{\frac{N}{2}}$ = $\underset{\hat{x}}{\operatorname{argmin}} \sum_{i=0}^{N} |x^i - \hat{x}|.$

$$\sum_{i=0}^{N} \|x^{i} - \hat{x}\|_{1}.$$

Given a set of numbers $\{x^i \in \mathbb{R}\}_{i=0}^N$, the median is Med

Naïve k-Medians finds the component-wise medians of vectors x^i , solving

 $\mathop{\mathrm{argmin}}_{\hat{x}}$

ian is Median = $x^{\frac{N}{2}}$ = $\underset{\hat{x}}{\operatorname{argmin}} \sum_{i=0}^{N} |x^i - \hat{x}|.$

$$\sum_{i=0}^{N} \|x^{i} - \hat{x}\|_{1}.$$

Given a set of numbers $\{x^i \in \mathbb{R}\}_{i=0}^N$, the median is

Naïve k-Medians finds the component-wise medians of vectors x^{i} , solving argmin \hat{x}

We want the more natural "geometric median":

argmin \hat{x}

Median = $x^{\frac{N}{2}}$ $= \underset{\hat{x}}{\operatorname{argmin}} \sum_{i=0}^{N} |x^{i} - \hat{x}|.$

$$\sum_{i=0}^{N} \|x^{i} - \hat{x}\|_{1}.$$

$$\sum_{i=0}^{N} \|x^{i} - \hat{x}\|_{2}$$

k-Means vs k-Medians **Performance with outliers**

Robustness to Outliers: k-Means and k-Medians

Feature 1

k-Means *vs* **k-Medians** Performance with outliers

Robustness to Outliers: k-Means and k-Medians

Breast Cancer dataset (30 dimensions, 2 classes malignant benign 10 15 5

k-Means vs k-Medians **A Performance Comparison**

Average Accuracy of k-Means and k-Medians (over 100 trials)

k-Means	k-Medians
79.57%	78.73%
91.71%	90.82%
74.47%	74.85%
44.84%	42.29%
94.31%	95.82%
90.80%	91.62%

Improving Initialization

Forgy

Initialize the centers randomly

Random Partition

Initialize the assignments of the data points randomly

k-Means++ (improved Forgy)

- Initialize the centers
- Incentivize distance from existing centers

•
$$\mathbb{P}(z_k = x^i) = \frac{\min_{z_{j < k}} ||x^i - z_j||^2}{\sum_{w=1}^N \min_{z_{j < k}} ||x^w - z_j||^2}$$

Improving Initialization

Forgy

Initialize the centers randomly

Random Partition

Initialize the assignments of the data points randomly

k-Means++ (improved Forgy)

- Initialize the centers
- Incentivize distance from existing centers

•
$$\mathbb{P}(z_k = x^i) = \frac{\min_{z_{j < k}} ||x^i - z_j||^2}{\sum_{w=1}^N \min_{z_{j < k}} ||x^w - z_j||^2}$$

k-GenCenters++

Incentivize a *custom cost* from existing centers

•
$$\mathbb{P}(z_k = x^i) = \frac{\min_{z_{j < k}} c(x^i, z_j)}{\sum_{w=1}^N \min_{z_{j < k}} c(x^w, z_j)}$$

Improving Initialization

Breast Cancer Dataset:

Accuracies of Various Initializations (avg. over 100 trials)

Forgy

Random Partition

++

Euclidean ++

Euclidean^2 ++

Euclidean^3 ++

k-Means	k-Medians
90.80%	91.62%
90.73%	91.61%
90.94%	91.64%
90.90%	91.64%
90.94%	91.65%
90.99%	91.68%

Must-link Constraints A form of semi-supervised clustering

Points known to share a factor (e.g. belonging to the same person) are "must-link".

Must-link Constraints A form of semi-supervised clustering

Points known to share a factor (e.g. belonging to the same person) are "must-link".

At every assignment step, for every set of must-link identities I_p , we assign the whole set to

Must-link Constraints A form of semi-supervised clustering

Points known to share a factor (e.g. belonging to the same person) are "must-link".

At every assignment step, for every set of must-link identities I_p , we assign the whole set to argmin

 \boldsymbol{Z}

By this approach,

- the centers may be more robust against local minima
- the algorithm can be expected to converge faster
 - Further speedups may be accessible using a weighted surrogate

$$\sum_{i\in I_p} c(x^i, z).$$

Acknowledgements Prof. Esteban Tabak! Andrew Lipnick and Nina Mortensen!

Olivia, Fortino, and Ryan!

Prof. Aleksandar Donev!

