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Part I
Morphology of melting ice



Geomorphology



Table-top geophysics
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The density anomaly

• Unlike most fluids, water is 
densest above its freezing point

• In some cases, against intuition, 
cold fluid may rise

How does the density 
anomaly influence shape?
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Ice making and experimental system
• Manufacture clear ice cylinders using 

directional freezing
• Ice is supported at its base -- not subject 

to gravity
• Experiments are conducted in a “cold” 

room to set far-field temperature

salt water < 0oC

uniform lighting gradient lighting



4oC 5.6oC 8oC
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• Density is approximated by a quadratic equation of state

Hydrodynamics and the Boussinesq approximation

Stefan condition:

• Fluid satisfies Navier-Stokes equation with coupled temperature field
Dimensionless parameters



Phase-field model of melting ice

• Ice/water represented by continuous phase parameter
• Fluid-structure interaction modeled by Brinkman penalization 



4oC 5.6oC 8oC



Simulated flow and temperature fields

• Stable boundary layer flows occur at 4oC and 8oC
• A shear flow occurs at 5.6oC that rolls up into wall-bound vortices

4oC 5.6oC 8oC



Pinnacle formation: connections to dissolution
• Boundary layer analysis predicts finite time singularity in tip curvature

Huang et al., PNAS (2020)

Ice Candy



Scallop formation: the Kelvin-Helmholtz instability
• Most unstable wavelength:
• Experiments:
• Non-dimensionalization:



Josh Tong Alexandra Zidovska

Questions?
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Laboratory icebergs

repulsion repulsion

ice

• Quasi two-dimensional geometry
• Ice floats and rolls due to buoyancy
• Low friction surface tension trap holds ice in camera view

”Cheerios effect”



30x speedup1cm





Simulations: quasi-static model
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• Represent interface in terms of tangent angle and total arclength

• Assume uniform melt rate below 
surface with boundary layer scaling

• Quasi-static center of mass dynamics 
follow Newton’s laws







Discussion and future directions

• Ice persistently capsizes, no gravitationally 
stable terminal state

• Tends towards a polygonal geometry, is this 
attracting?

• What happens at low temperatures where 
the density anomaly plays a role?

Questions?
Collaborators
Bobae Johnson
Steven Zhang



Part II
Continuum modeling of active fluids



Swimming at low Reynolds number

• At small scales, inertia is negligible

• Linear, elliptic, time reversible –
reciprocal strokes yield no net motion

Purcell, AIP (1976)

Drescher et al., PNAS (2011)

Stokes equations



Collective flows of microswimmer suspensions

B. Subtilis Microtubules + 
kinesin motors

Dogic lab
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Doi-Saintillan-Shelley kinetic theory
• Particle position and orientation are represented by a continuous 

distribution function
Microscopic model

Conservation of particles

Conservation of momentum

Active stress

“Pusher” “Puller”



Mean-field equations and the closure problem
• Kinetic theory has 2d-1degrees of freedom
• Evolve low-order orientational moments/order parameters

kinematic

diffusion, steric interactions

concentration:
polar order:

nematic order:

equations are not closed!swimming



Quasi-equilibrium closure

• Seek a distribution function that minimizes the conformational entropy

• “Maximum entropy” distribution, analogous to Gibbs-Boltzmann

• Solve for this distribution constrained to known moments, then 
integrate to obtain higher moments

“B-model”



• Quasi-equilibrium distribution preserves balance of entropy 
production and dissipation

• Analogous to fundamental thermodynamic relation out of 
equilibrium

Thermodynamic consistency



Linear theory of the isotropic base state

• Homogeneous steady state:

• Linearized distribution:

• Consider plane-wave perturbations

unstable
stable



• Base state:

• Linearized equations

• Consider plane-wave perturbations

Linear theory of the polar aligned base state

always unstable





Nonlinear simulations
Kinetic theory B-model Isotropic closure Quadratic closure



Entropy and fluctuations



Discussion & conclusions

• Captures linear instabilities of the kinetic 
theory

• Preserves balance of conformational 
entropy production and dissipation –
“thermodynamically consistent”

• Accurately reproduces nonlinear  dynamics 
and nonequilibrium statistics

S. Weady, D.B. Stein, M.J. Shelley, “Thermodynamically consistent coarse-graining of 
polar active fluids,” Phys. Rev. Fluids (2022) David Stein

Questions?
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Inverse problem for the quasi-equilibrium distribution

5 (2D) or 8 (3D) dimensional 
nonlinear system – interpolate

• The B-model consists of a mapping

• Need to solve for the distribution function to match known moments
Constraints



• Define where   
• Reparametrize the unit sphere by 

Interpolation in the nematic frame

3 (2D) or 5 (3D) degrees of freedom

d   d.o.f

(d-1)   d.o.f



Apolar suspensions: the Bingham closure
• For apolar states,            , distribution is invariant under 

• Reduces to a (d-1)-dimensional system of equations

• Map from (d-1) eigenvalues of      to diagonal components of 

C. Chaubal & L.G. Leal, Journal of Rheology (1998)



Apolar suspensions: two dimensions

Expand in Chebyshev basis:



Apolar suspensions: three dimensions

Expand in separable Chebyshev basis:



Polar suspensions

• Now need the full map
• Transform domain of moment constraints 

to hypercube, expand in Chebyshev basis



Cost and convergence (3D)

• Low accuracy in closure map limits spatial accuracy
• Execution time of interpolants is comparable to FFTs



Discussion & conclusions

• Chebyshev interpolation preserves accuracy of nonlinear solve at 
low cost

• Inaccurate interpolation results in slow decay in Fourier 
coefficients of mean-field variables

• Rotation-based framework extends to polar suspensions, but cost 
is high – further approximations may be needed

S. Weady, M.J. Shelley, D.B. Stein, “A fast Chebyshev method for the Bingham closure 
with application to active nematic suspensions,” J. Comp. Phys. (2022) David Stein



Nematic suspension, 40962 grid



Pusher suspension, 20482 grid



Nematic suspension, 10243 grid



Thanks! Questions?
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