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Orders of business

1. Problem set up
2. The model/method we used
3. Towards a new method
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Colloidal Chains











Experiments



Simulation



Magnetic Model



Magnetic Force

Superparamagnetic particles (almost) instantaneously develop
a magnetic moment m̄ aligned with the applied magnetic field
B(t) so that

m̄ ∝ B(t) = BDCx̂+ BAC sin (2π(50Hz)t) ŷ+ BAC sin (2π(50Hz)t) ẑ.

In a chain of N beads, the magnetic force on bead i due to the
interaction with bead j is

fmagi,j =
F0

(ri,j/a)4
(
2
(
m̄ · r̂i,j

)
m̄−

(
5
(
m̄ · r̂i,j

)2 − 1) r̂i,j) , (1)

where F0 = 2.6× 10−12N is the strength of the magnetic
interactions.
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Magic Angle

We can define the ‘angle’ β of the magnetic field

B(t) = BDCx̂+ BAC sin (2π(50Hz)t) ŷ+ BAC sin (2π(50Hz)t) ẑ.

as
β = arctan

(
BAC
BDC

)
.

And it was observed in experiments that the chains formed a
helix shape for

β ≈ 55◦,

where stretching from BDC, and twirling from BAC are in balance.
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Chain Model



Requirements

• We maintain inextensibility between the centers of
neighboring beads xi and xi+1

• The particles in the chain are bonded together so they
shouldn’t ‘twist’ much relative to each other.

• The chain should be able to bend with modulus κb
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Heterogeneity in Bending

The chains in experiments clearly have a preferred chirality
from a heterogeneity built into them during synthesis. We
model this as a linearly decaying bending stiffness

κb (s) = κconst.b
3+ 2(i/N)

5
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Kirchhoff Rods



Particle orientation

At each bead, we affix an othonormal triad

Qi = [D1i ,D2i ,D3i ],

and constrain D3i = (xi+1 − xi) ≈ x
′
(s) = t(s).
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Kirchhoff Rods

Assume the frames at two neighboring beads only differ by a
small rotation
Let s be arclength along the chain.

∂sQ = Ω× Q

Using
D1 = D2 × D3, · · ·

we get

Ω = Ω1D1 +Ω2D2 +Ω3D3 (2)
=

(
D2s · D3

)
D1 +

(
D3s · D2

)
D2 +

(
D1s · D2

)
D3 (3)

and discretize Dks ≈ Dki+1/2 − Dki−1/2
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Penalty Method

Lim and Peskin give forces and torques on the particles as

−fch =

(1)︷︸︸︷
∂sΛ (4)

−τ ch = ∂sM(s)︸︷︷︸
(2)

+(∂sx)×Λ︸ ︷︷ ︸
(3)

(5)

where Λ enforces that the triad be orthogonal and that
D3i = (xi+1 − xi) ≈ ∂sx = t(s).

Λ = Λ1D1 + Λ2D2 + Λ3D3 (6)
= κS

(
D1 · t

)
D1 + κS

(
D2 · t

)
D2︸ ︷︷ ︸

(a)

+κS
(
D3 · t− 1

)
D3︸ ︷︷ ︸

(b)

(7)

And
M(s) =

(
κb

[
Ω1D1 +Ω2D2

]
+ κTΩ3D3

)
12



Force and Torque on the Chain

The force and torque on bead i in the chain is

fi = fchi +
∑
j>i

fmagi,j (8)

τi = τ chi +
∑
j>i

τmagi,j (9)
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hydrodynamics



Equation of motion

Chains are small enough that steady Stokes equations govern
hydrodynamics. Linearity of Stokes means that we can writeU1...

UN

 = N (x1, · · · , xn) ·

F1...
FN

 , Ui =
[
ui
ωi

]
, Fi =

[
fi
τi

]
(10)

Mobility
• N (x1, · · · , xn) is a ’Friction’ or ’Mobility’ operator that
depends of the configuration of every particle in the chain
and the geometry of the domain (e.g. bottom wall)

Update position
we integrate xi,Qi according to

∂txi = ui, (11)
∂tQi = ωi × Qi, (12) 14



Details in Hydrodynamics

• Chains are small enough that hydrodynamics also must
include terms which capture thermal fluctuations from the
fluid. These are included but we won’t really discuss them.

• Since the beads are so close together, we include
lubrication corrections in the mobility

N̄ =

(
N−1 −N−1

close particles +
(
N asymptotics

close particles

)−1
)−1

and steric repulsion to keep the beads from overlapping
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Comparison With experiments



Another Way



Problems With Kirchhoff

1. Unnecessary degrees of freedom (position and orientation
of every particle in the chain)

2. Penalty formulation imposes a potentially large time step
restriction
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New Coordinates

We should be able to model chains using only their unit
tangent vectors ti and a scalar ‘twist’ θi off of a reference axis
(more on θi in coming slides). Given a set of unit tangent
vectors

{t1, t2, · · · , tN}

we can find

xi = x0 +
i−1∑
j=1

ti ≈ x0 +
∫ s

0
t(s′)ds′

as a map from
t ∈ S2 → x ∈ R3
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New Coordinates
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New Coordinates

For a straight chain pointing into the page, we can define z as a
reference axis and measure the local twist θi off of this axis.

t

z
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i

i

i

But what about a curved chain?
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Bishop Frame

Recall
∂st = Ω× t

We can write
Ω = m(s)t+ t× ts

where m(s) =
(
D1s

)
· D2 is the ‘rate of twist’.
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Bishop Frame

The material frame

Q(s) = [D1(s),D2(s),D3(s)],

is to be determined by the physics of the problem.

But we can define a new ‘intrinsic frame’ (Bishop frame) so
that the rate of twist vanishes.

B(s) = [t(s),u(s), v(s)] such that (13)
mB(s) = us · v = 0 (14)

and
ΩB =����mB(s)t+ t× ts
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Bishop Frame

In the Bishop frame

∂su = (t× ts)× u (no twist)

which is integrable as

u(s) = exp
(
s [t× ts]×

)︸ ︷︷ ︸
P

u(0), v(s) = t(s)× u(s)

where P is a rotation matrix such that t(s+ ds) = P · t(s), or a
parallel transport map.

22



Bishop Frame

Given t(s) and u(0), v(0) (which are arbitrary), the Bishop
frame is completely determined. We use the bishop frame as a
reference frame for measuring θ.

t

u
D

D
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θ 
i

i

i
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New Coordinates
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Bishop Frame

From the Bishop frame and θ(s), we compute the material
frame as

D1 = cos(θ)u+ sin(θ)v (15)
D2 = − sin(θ)u+ cos(θ)v (16)

Hence
m(s) =

(
D1s

)
· D2 = θs

and

Ω = θs︸︷︷︸
Ω3

t+ t× ts︸ ︷︷ ︸
Ω1D1+Ω2D2

(17)
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Energy

Ω = θs︸︷︷︸
Ω3

t+ t× ts︸ ︷︷ ︸
Ω1D1+Ω2D2

The energy functional for a constrained (xs = t) Kirchhoff rod
is

E =
1
2

∫ L

0
κb

(
Ω21 +Ω22

)
+ κTΩ

2
3 +

Lagrange mult.︷︸︸︷
Λ(s) ds (18)

=
1
2

∫ L

0
κb

(
||t× ts||2

)
+ κT (θs)

2 + Λ(s) (19)

=
1
2

∫ L

0
κb

(
||ts||2

)︸ ︷︷ ︸
Euler Beam

+κT (θs)
2 + Λ(s) (20)
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Variation of the energy

We get the torque on out particles from E easily by varying
theta

τ = − δ

δθ
E = −κTθss

The force is a bit more nuanced.
We vary the center-line x(s)← x(s) + δx(s) and compute

f = −δE
δx −

δE
δθs

δθs
δx
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Variation of the energy

The quantity
δθs
δx

is tantamount to the variation of the Bishop frame along
centerline

δθs
δx = us∢

δus
δx
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Holonomy

δθs
δx = u∠δu ≈ ||ts × δxs|| = (t× ts) · δxsds
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Variation of the energy

τ = − δ

δθ
E = −κTθss (21)

f = −δE
δx −

δE
δθs

δθs
δx (22)

= κbxssss − κT
(

θs︸︷︷︸
from δE

δθs

from δθs
δx︷ ︸︸ ︷

(t× ts)
)
s + (Λt)s (23)
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Next Steps

Open question:
How to do hydrodynamics with constrained chains and twist.
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