	Conclusion and References

Robust Control for Quantum Systems

finding optimal control under noise

Qianyu Zhu

Supervised by G. Stadler F. Garcia

New York University, Shanghai

July 28, 2022

Introduction		Conclusion and References
•000		

Introduction to quantum system

- simplest quantum system: qubit classical bit is either 0 or 1, qubit can be both.
- state vector:

$$\psi = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}, \quad |\psi|^2 = |\alpha|^2 + |\beta|^2 = 1, \quad \alpha, \beta \in \mathbb{C}.$$

•
$$\psi$$
 can have > 2 energy states.

examples:

$$\psi_1 = \begin{pmatrix} 0\\1 \end{pmatrix}$$
 $\psi_2 = \begin{pmatrix} 0.6\\0.8 \end{pmatrix}$ $\psi_3 = \begin{pmatrix} \cos\theta\\i\sin\theta \end{pmatrix}$

Quantum Control

Introduction		Conclusion and References
0000		

Introduction to quantum system

evolution of quantum state vector $\psi(t) \in \mathbb{C}^d$:

Schrödinger's equation $\dot{\psi}(t) = -iH(t; f(t))\psi(t)$.

Hamiltonian H: C^{d×d}, Hermitian, (t; f(t))-dependent.
 f(t): reflects our control.

our Hamiltonian model:

$$H(t) = \omega \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} + f(t) \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

Demonstration of "control":

assume
$$H(t) := f(t) \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
, start from $\psi(0) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$.
 $f(t) \equiv 0$

$$f(t) \equiv const$$

$$f(t) = c \cdot (100 - t)^2$$

$$f(t) = c \cdot (100 - t)^2$$

$$f(t) = f(t) = f(t) \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
, start from $\psi(0) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$.
From state |0)
From state |0]

Introduction 000●	Experiment and Solution	Conclusion and References

Control problem

given:

$$\left\{ egin{aligned} \dot{\psi} &= -iH(t;f(t))\psi, \ \psi(0) &= \psi_0 := egin{pmatrix} 1 \ 0 \end{pmatrix}. \end{aligned}
ight.$$

we want:

$$\psi(T) = \psi_{tg} := \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

loss function:

$$L(f(t)) = 1 - \left| \langle \psi(T), \psi_{tg} \rangle \right|^2$$

Q: when does L(f) = 0? $\psi(T) = \psi_{tg}!$

	Noise Model ●○	Experiment and Solution	Conclusion and References
Noiso attack			

the optimization problem

$$\min_{\substack{f:[0,T]\to\mathbb{R}\\ \psi=-iH(t;f(t))\psi,\\ \psi(0)=\psi_0.}} L(f)$$

noise model:

$$\epsilon \sim \text{Unif}(-\delta, \delta), \qquad H(\epsilon) := H + \epsilon A$$

noise-aware loss function:

$$L_{NA} = \mathbb{E}^{\epsilon}[e^{L(f;\epsilon)}] = \frac{1}{2\delta} \int_{\epsilon} e^{L(f;\epsilon)} d\epsilon.$$

Noise Model ○●	Experiment and Solution	Conclusion and References

Why is this challenging?

updated optimization problem

$$s.t. \quad \begin{cases} \min_{f:[0,T]\to\mathbb{R}} \mathbb{E}^{\epsilon}[e^{\mu L(f;\epsilon)}] \\ \dot{\psi} = -iH(t;f(t);\epsilon)\psi, \\ \psi(0) = \psi_0. \end{cases}$$

we use Juqbox, a Julia package!

- ► *f* in infinite-dim space
- need $\partial_f L$ to update f
- ODE constraint
- ▶ integral \int_{ϵ} in loss

- ▶ approximate *f* by finite basis
- get gradient by adjoint method
- quadrature/Monte-Carlo sampling

	Experiment and Solution	Conclusion and References
	000	

Test problem: 1-dim uniform noise

Hamiltonian

$$H(\epsilon) = \omega A + f(t)B + \epsilon C$$

where

- ωA : natural evolution,
- $\blacktriangleright f(t)B$: human control,
- ϵC : uniform noise,
- ▶ A, B, C are fixed, Hermitian matrices $\in \mathbb{C}^{3 \times 3}$.

our goal

start from
$$\psi(0) = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
, arrive at $\psi(\mathcal{T}) = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$.

	Experiment and Solution 000	Conclusion and References

Comparison between NF and NA methods

- ► noise-free method is only accurate for e ≈ 0;
- noise-aware method behaves robustly under large noise;
- good generalization ability.

	Experiment and Solution	Conclusion and References

Test problem: high-dim noise

noise model:

 $\begin{pmatrix} \epsilon_1 & \epsilon_4 \\ \epsilon_4 & \epsilon_2 & \epsilon_5 \\ & \epsilon_5 & \epsilon_3 \end{pmatrix} \\ \epsilon_i \sim Unif(-\delta_i, \delta_i).$

 curse of dimensionality:
 –MC method.

Error distribution for different methods

	Experiment and Solution	Conclusion and References

Contribution and future work

contribution:

- implement risk-aware loss functions
- test on 1-dim noise
- test on higher-dim noise

future work:

. . .

- N-qubit system
- non-uniform noise
- new loss function

Two physicists trying to control a qubit in the lab

	Experiment and Solution	Conclusion and References ○●○
References		

Juqbox.

https://github.com/LLNL/Juqbox.jl. Accessed: 2022-06-20.

 Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, 2010.

N. Anders Petersson and Fortino Garcia. Optimal control of closed quantum systems via b-splines with carrier waves, 2021.

	Experiment and Solution	Conclusion and References
References		

other risk aware loss functions we experimented on:

▶ risk-neutral:
$$F(\alpha) := \mathbb{E}^{\epsilon}[L(\alpha, \epsilon)]$$

• risk-sensitive:

$$F(\alpha) := \mathbb{E}^{\epsilon}[e^{L(f;\epsilon)}]$$

• mean-variance:

$$F(\alpha) := \mathbb{E}^{\epsilon}[L(\alpha, \epsilon)] + \frac{\theta}{2} \cdot \operatorname{Var}[L(\alpha, \epsilon)]$$

► conditional value-at-risk: $CVaR_{\beta}[X] := inf_{t \in \mathbb{R}} \{t + (1 - \beta)^{-1}\mathbb{E}[(X - t)_{+}]\}$