Fast Linear System Solve via Subspace Iteration

Ibrohim Nosirov
Advisors: Chris Musco, Jonathan Weare
AMSURE 2023

Linear System

A linear system is a problem that can be written down as

$$
A \mathbf{x}=\mathbf{b},
$$

where $A \in \mathbb{R}^{m \times n}$.
In this talk, we are interested in the case where A is symmetric positive definite (eigenvalues are all greater than zero).

More specifically, we are interested in minimizing the residual,

$$
\arg \min _{\mathbf{x}}\|A \mathbf{x}-\mathbf{b}\|_{2}^{2} .
$$

Iterative vs Direct Methods

In general, solving a linear system is an order $\mathcal{O}\left(n^{2}\right)$ time operation, with a worst case complexity of $\mathcal{O}\left(n^{3}\right)$.

For large scale problems, iterative algorithms are preferred to direct methods, like LU, due to issues like computer memory requirements.

Credit: Numerical Linear Algebra, Trefethen \& Bau '97

Our Scheme

-We propose an iterative algorithm that scales well for large matrices.
-This algorithm uses randomness to speed up convergence.
-The convergence rate of this algorithm will depend on the gaps between eigenvalues in the spectrum of A.
-Due to time, exciting geometric intuition (e.g. our method's robustness to defective matrices compared to Krylov subspaces) is omitted.

Our Scheme

The algorithm we wish to speed up is called Gradient Descent.
GD iteratively minimizes a function, f, where at each step we compute,

$$
\mathbf{x}_{k+1}=\mathbf{x}_{k}-\varepsilon \nabla f\left(\mathbf{x}_{k}\right) .
$$

In our case, this amounts to

$$
\mathbf{x}_{1}=\mathbf{x}_{0}+\varepsilon\left(\mathbf{b}-A \mathbf{x}_{0}\right) .
$$

Our Scheme

We construct a matrix

$$
\bar{A}=\left(\begin{array}{cc}
1 & \mathbf{0} \\
\varepsilon \mathbf{b} & I-\varepsilon A
\end{array}\right),
$$

where $\varepsilon \leq \frac{1}{\lambda_{\max }}$.
When applied to some non-zero (usually random) vector $\overline{\mathbf{x}}_{0}=\binom{1}{\mathbf{x}_{0}}$, we get

$$
\bar{A} \overline{\mathbf{x}}_{0}=\binom{1}{\varepsilon \mathbf{b}+\mathbf{x}_{0}-\varepsilon A \mathbf{x}_{0}}=\binom{1}{\mathbf{x}_{0}+\varepsilon\left(\mathbf{b}-A \mathbf{x}_{0}\right)}=\binom{1}{\mathbf{x}_{1}}
$$

a gradient descent iteration in the lower block of the resulting vector.

Power Method

Repeatedly applying a matrix to a vector converges to the dominant eigenpair of that matrix.

This process is called Power Method.
In our case, we are performing power method on $I-\varepsilon A$.
The eigenvalues are arranged as $\left\{1-\lambda_{n}, 1-\lambda_{n-1}, \ldots, 1-\lambda_{1}\right\}$ where λ_{i} is the i-th eigenvalue of A.

Subspace Iteration

Power Method on $I-\varepsilon A$ has convergence rate that depends on $\frac{1-\lambda_{n-1}}{1-\lambda_{n}}$, where a small ratio implies fast convergence.

Subspace Iteration is an extension on Power Method:
Replace the starting vector $\binom{1}{\mathbf{x}_{0}}$ with a starting matrix $\bar{\Pi}=\left(\begin{array}{cc}1 & \mathbf{0} \\ \mathbf{0} & \Pi\end{array}\right)$ where $\Pi \in \mathbb{R}^{n \times k}$ is a random matrix with $n \gg k$.

Subspace iteration convergence depends on $\frac{1-\lambda_{n-k}}{1-\lambda_{n}}$.

Eigenspectrum v. Convergence

Setting the size of the subspace $k=20$

Eigenspectrum v. Convergence

PageRank Random Starting

Setting the size of the subspace $k=20$

Application: PageRank

The PageRank problem shows up in many contexts.
The solution to this problem outputs a ranking of nodes (hyperlinks) in a graph based on an internet surfer's likelihood of going to each link.

For our purposes, it suffices to say that $A=I-\omega P$ where P is a stochastic matrix (columns are probability vectors) and ω is a constant.

PageRank Random Starting Result

Setting subspace size $k=3$

Conclusion

We have an algorithm that iteratively converges to a solution to a linear
system on the order of $\frac{\left(1-\lambda_{n-k}\right)}{\left(1-\lambda_{n}\right)}$.
This scheme works particularly well when there is a cluster of small eigenvalues and a cluster of large eigenvalues.

This is often true for stochastic matrices that show up in problems like PageRank.

