

Fast Linear System Solve via Subspace Iteration

Ibrohim Nosirov

Advisors: Chris Musco, Jonathan Weare
AMSURE 2023

Linear System

A linear system is a problem that can be written down as

$$A\mathbf{x} = \mathbf{b},$$

where $A \in \mathbb{R}^{m \times n}$.

In this talk, we are interested in the case where A is **symmetric positive definite** (eigenvalues are all greater than zero).

More specifically, we are interested in minimizing the residual,

$$\arg \min_{\mathbf{x}} \|A\mathbf{x} - \mathbf{b}\|_2^2.$$

Iterative vs Direct Methods

In general, solving a linear system is an order $\mathcal{O}(n^2)$ time operation, with a worst case complexity of $\mathcal{O}(n^3)$.

For large scale problems, iterative algorithms are preferred to direct methods, like LU, due to issues like computer **memory requirements**.

Our Scheme

- We propose an iterative algorithm that **scales well for large matrices**.
- This algorithm uses **randomness** to speed up convergence.
- The convergence rate of this algorithm will depend on the **gaps between eigenvalues** in the spectrum of A .
- Due to time, exciting geometric intuition (e.g. our method's robustness to defective matrices compared to Krylov subspaces) is omitted.

Our Scheme

The algorithm we wish to speed up is called **Gradient Descent**.

GD iteratively minimizes a function, f , where at each step we compute,

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \varepsilon \nabla f(\mathbf{x}_k).$$

In our case, this amounts to

$$\mathbf{x}_1 = \mathbf{x}_0 + \varepsilon (\mathbf{b} - A\mathbf{x}_0).$$

Our Scheme

We construct a matrix

$$\bar{A} = \begin{pmatrix} 1 & 0 \\ \varepsilon \mathbf{b} & I - \varepsilon A \end{pmatrix},$$

where $\varepsilon \leq \frac{1}{\lambda_{max}}$.

When applied to some **non-zero (usually random) vector** $\bar{\mathbf{x}}_0 = \begin{pmatrix} 1 \\ \mathbf{x}_0 \end{pmatrix}$, we get

$$\bar{A} \bar{\mathbf{x}}_0 = \begin{pmatrix} 1 \\ \varepsilon \mathbf{b} + \mathbf{x}_0 - \varepsilon A \mathbf{x}_0 \end{pmatrix} = \begin{pmatrix} 1 \\ \mathbf{x}_0 + \varepsilon (\mathbf{b} - A \mathbf{x}_0) \end{pmatrix} = \begin{pmatrix} 1 \\ \mathbf{x}_1 \end{pmatrix},$$

a **gradient descent iteration** in the lower block of the resulting vector.

Power Method

Repeatedly applying a matrix to a vector converges to the dominant eigenpair of that matrix.

This process is called Power Method.

In our case, **we are performing power method on $I - \varepsilon A$.**

The eigenvalues are arranged as $\{1 - \lambda_n, 1 - \lambda_{n-1}, \dots, 1 - \lambda_1\}$ where λ_i is the i -th eigenvalue of A .

Subspace Iteration

Power Method on $I - \varepsilon A$ has convergence rate that depends on $\frac{1 - \lambda_{n-1}}{1 - \lambda_n}$, where a **small ratio implies fast convergence.**

Subspace Iteration is an extension on Power Method:

Replace the starting vector $\begin{pmatrix} 1 \\ \mathbf{x}_0 \end{pmatrix}$ with a starting matrix $\bar{\Pi} = \begin{pmatrix} 1 & \mathbf{0} \\ \mathbf{0} & \Pi \end{pmatrix}$ where $\Pi \in \mathbb{R}^{n \times k}$ is a random matrix with $n \gg k$.

Subspace iteration convergence depends on $\frac{1 - \lambda_{n-k}}{1 - \lambda_n}$.

Eigenspectrum v. Convergence

Setting the size of the subspace $k=20$

Eigenspectrum v. Convergence

Setting the size of the subspace $k=20$

Application: PageRank

The PageRank problem shows up in many contexts.

The solution to this problem outputs a ranking of nodes (hyperlinks) in a graph based on an internet surfer's likelihood of going to each link.

For our purposes, it suffices to say that $A = I - \omega P$ where P is a **stochastic matrix** (columns are probability vectors) and ω is a constant.

PageRank Random Starting Result

Setting subspace size $k=3$

Conclusion

We have an algorithm that iteratively converges to a solution to a linear system on the order of $\frac{(1 - \lambda_{n-k})}{(1 - \lambda_n)}$.

This scheme works particularly well when there is a **cluster of small eigenvalues and a cluster of large eigenvalues**.

This is often true for stochastic matrices that show up in problems like PageRank.