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Why Entropy?
What is entropy?

• Shannon entropy is a measure of “surprisal”


• Self entropy: or some random variable  following a distribution  
 
 

• Cross entropy: for some random distribution  and an estimator distribution  
 
 
 

X p

p q

H(p, p) = − ∑
x

p(x)log p(x) .

H(p, q) = − ∑
x

p(x)log q(x) .



Why Entropy?
Quantifying time reversal symmetry

• Kullback-Leibler divergence (KLD) - measure of distance from one probability 
distribution to a reference probability distribution. 
 

• Entropy production - the measure of the distance to time-reversal symmetry


• For variable  which is the flipped version of  and follows the distribution , X′ X q

DKL(p ∥ q) = H(p, q) − H(p)

DKL(p ∥ q) = Entropy production



Algorithm
Estimate the entropy when the distribution is unknown.

• Input series
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Estimate the entropy when the distribution is unknown.

• Input series


• Entropy estimator


H =
log2M
< l >



Algorithm
Pattern matching estimator

• Data compression algorithm:


Lempel-Ziv 77 Factorization (LZ77)


Number of factors C = 5

Examples and derivations come from Stefano’s talk at Santa Fe, “The Other Side Of Entropy”



Algorithm
Pattern matching algorithm

H ≤
C
N

log2N +
1
N

C

∑
i=1

log2li

Information required to specify the factor of a finite sequenceH ≤

Examples and derivations come from Stefano’s talk at Santa Fe, “The Other Side Of Entropy”

Length of compressed data

Number of factorsC =
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H ≤
log2M
< l >

Pattern matching estimator

…

Length of compressed data

Number of factorsC =



Discrete Implementations
Verification using Bernoulli series

As expected, the error of the 
estimator decreases as the 
input length grows.



Discrete Implementations
Introduce the Fast Fourier transform(FFT)

• Why Fast Fourier Transform?


It’s faster in higher dimensions.


A good practice before moving to the continuous case


H =
log2M
< l >



Discrete Implementations 
Find the longest length of best matches li H =

log2M
< l >

F = ℱ{sample} G = ℱ{dictionary}
F ∘ GCross correlation =



Continuous Implementations
Generating hard rods

• Non-overlapping constant-length rods 
 
 
 
 
 

• Analytic entropy is known


• Discretization does not produce a good estimate



Continuous Implementations
Real-space

• Used hard rods encoded by center location


• Match distances between rod centers with some error ϵ



Continuous Implementations
Fourier-space

• Use non-uniform FFT (NUFFT) 
 
 
 
 



Neural Data
Neuron activity in the visual cortex

• Spike train of neurons:  recording of neuron activations.

• Virtual cortex

Secondary Visual 
Cortex(V2)

Primary Visual 
Cortex(V1)



Neural Data
Neuron activity in the visual cortex

• Spike train of neurons:  recording of neuron activations.

• Virtual cortex

• Experiment Setup

Secondary Visual 
Cortex(V2)

Primary Visual 
Cortex(V1)

Oriented gratings 

Macaques 



Neural Data
Quantities measured

• Hypothesis

Neural code is more time reversible in different brain areas, revealing the 
computing happening in the visual cortex.



Neural Data
Quantities measured

• Entropy: 


• Cross Entropy:


• Kullback-Leibler divergence (KLD):


•  - distribution of spike train data 


•  - distribution of reversed spike train data

p

q

H(p) = − ∑
x

p(x)log p(x) .

H(p, q) = − ∑
x

p(x)log q(x) .

DKL(p ∥ q) = H(p, q) − H(p) . A measurement of 
 time-reversal symmetry

• Hypothesis

Neural code is more time reversible in different brain areas, revealing the 
computing happening in the visual cortex.



Neural Data
 Avg KLD vs. Firing Rate in V1

• Firing rate (Hz):    


• In V1


The KLD has a positive linear 
relationship with the firing rate of 
neurons.

v =
nsp

T



Neural Data
 Avg KLD vs. Firing Rate in V2

• Firing rate (Hz):    


• The same observation holds in V2:


The KLD has a positive linear 
relationship with the firing rate of 
neurons.

v =
nsp

T



Future work

• Neural data:


• Apply algorithm to visual cortices of other animals


• Refine continuous implementation in real and Fourier space


• Extend to higher dimensions
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Why Entropy (Backup)
Cross-entropy

• Measure of bits needed when the distribution is assumed to be  but is 
actually 


• Useful in machine learning context

q
p

H(p, q) = − ∑
x

p(x)log q(x) .



Algorithm (Backup)
Pattern matching algorithm

H ≤
C
N

logN +
1
N

C

∑
i=1

logli

=
C
N

logN +
C
N

< logl >

≤
C
N

logN +
C
N

log < l >

H ≤
logN
< l >

+
log < l >

< l >

H ≤
logN
< l >

Pattern matching 
estimator

Information required to specify the factor of a finite sequenceH ≤

Examples and derivations come from Stefano’s talk at Santa Fe, “The Other Side Of Entropy”

• LZ77 is proved to asymptotically converge to the entropy



• Cross correlation is valid only for binary input


• Phase correlation:

Phase Correlation (Backup)
Non-binary input

F = ℱ{sample} G = ℱ{dictionary}
F ∘ G

|F ∘ G |
Phase correlation =



Algorithm (Backup)
Pattern matching estimator

• Data compression algorithm:


• Lempel-Ziv 77 (LZ77) Factorization


Number of factors C = 5

Examples and derivations come from Stefano’s talk at Santa Fe, “The Other Side Of Entropy”
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Pattern matching estimator

• Data compression algorithm:


• Lempel-Ziv 77 (LZ77) Factorization


Examples and derivations come from Stefano’s talk at Santa Fe, “The Other Side Of Entropy”



Discrete Implementations (Backup)
Verification using 3-state Markov chain

As expected, the error of the 
estimator increases as the 
bias grows.


