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IB finite element method

U = reference configuration
x(+, t) = motion map
X € U = Lagrangian coordinates

x € Q = current coordinates

o(x,t) = o'(x,t)

o%(x,t) forx € x(U,t)
0 otherwise

first Piola—Kirchoff stress:

Q2

Figure: fluid—solid system at time t

Pe(X, t) = J(X, t) o (x(X, 1), t)F-T(X,t), XeU



Equations of motion

balance of momentum
0
(alt‘ (x,t) + u(x, t) - Vu(x, t)) = —Vp(x,t) + pAu(x, t) + f(x, t) + fexe (X, t)
mass conservation
V- u(x,t)=0
force density from the solid
f(x, t) = / V- P(X, £) 5(x — x(X, £))dX
U
= [ P ONGO8(x ~ x(X, ) dAX)
ou
no slip between solid and fluid
9X (%, ¢) = /u(x, £)5(x — x(X, £))dX
ot Q

Boffi et al., Comput Methods Appl Mech Eng, 2008



First example: thick pre-stressed ring

se U=[0,2rR] x [0, w],

x(s,0) = (cos(s1/R(R + s2) + 0.5, sin(s1/R)(R+ v+ s2)),




Pressure field: thick pre-stressed ring

-1.8 6.6 15.

Figure: Pressure field.



Numerical errors: thick pre-stressed ring with sharp
interface

original IBFE, velocity errors original IBFE, pressure errors
4
e [, s ]2 e [ s hz—-h’ - 107} e [ s L2 s L s o s w2
, - - - -
10 - -
- 2
- 10 -

—
o —/’——:—;—:-:_
10-6 .




Some ways for dealing with errors at the interface

e immersed interface methods, cut-cell methods: discrete
operators like finite difference stencils are locally modified at the
f|uid/SO|id interface. (LeVeque and Li, SIAM J Num Anal, 1994).

e immersed boundary smooth extension: compute functions that
are “smooth extensions” from the fluid to solid domain, and use
them to modify the forcing on the fluid.

(Stein et al., J Comput Phys, 2016).

Our approach: requires no modification of discrete operators, can deal
with moving interfaces in 2D and 3D, and is not poorly conditioned.



Discontinuities at the fluid/solid interface
[e()] = limg(x +en) —limg(x —en) :==g"(x) — g (x)

continuity of the traction vector implies [eon] =0 on 9Jx(U,t).

traction vector continuity is Newton’s third law:
“When one body exerts a force on a second body, the second body
simultaneously exerts a force equal in magnitude and opposite in
direction on the first body.”

https://en.wikipedia.org/wiki/Newton%27s_laws_of_motion


https://en.wikipedia.org/wiki/Newton%27s_laws_of_motion

Pressure discontinuity

Using traction vector continuity and 0% = 0 on dx/(U, t):

—[pln+ p[Vu+ (Vu)'In—e>"n=0.

Lemma: Let t and b form a basis for the tangent plane to the point at
which we are considering the jump. Then [(Vu)t] = [(Vu)b] = 0.

Proof: Consider a parametrized curve 3 = 3(s) defined on dx (U, t)
that contains the point at which we consider the jump. This curve is
constructed so its tangent vector d3/ds is equal to t at this point.

d dB

Su(B(s) = 52 Tu(B(s)) = t- Vu(A(s))



Pressure discontinuity

—[pln+ p[Vu+(Vu)'In -0 " n=0.

Lemma: [n-(Vu)n] = [n-(Vu)'n] =0.

Proof: Use the incompressibility condition and [(Vu) t] = [(Vu)b] = 0.

[ [p]=—n-o%"n




Shear stress discontinuity

For a unit tangent vector t to dx (U, t):

pt-[Vu+(Vu) In=t-o%n

This jump condition can be reformulated in terms of the normal
derivative of u:

p[(Vu)yn]=(—nn")o® n.




Transforming vectors

Let v be the unit tangent vector to a curve ~(s), i.e.

dvy
VvV — E

Also, let F(s) = x(v(s)).

d¥ d d~
7~ g X)) 4 — LV



Transforming area elements

Let N = v x w be a normal vector in the reference configuration. Define:

FvxFw
IFv x Fwl

to be the normal vector in the current configuration. The ratio of sizes of
area elements is:

dA  lvxw]| 1

da |[FvxFw| |FvxFw|

This, combined with the identity: Fv x Fw = det(F) F~"v x w gives
Nanson'’s relation:

nda = det(F)F~ "N dA.



Removing the pressure jump

By definition of P€ and Nanson's relation:
onda=P°NdA and nda=JF " NdA
These equations imply:

_FN
[F= TN

PN
and o®n=J"1—0b
[IF-TN|
so the jump in the pressure is:

n-P¢N
o= —J 1
[P [FTN]

Idea to “remove” the jump: define a modified stress P¢ so that

n-P*N = 0.



Removing the pressure jump

Let ¢ be some scalar valued function defined on U and
Pe =P — JoFT.

Thenn-P*N=0 < n-P°N=Jon-F N,

implying we want ¢ to satisfy:

., FN

—— . P*N := .
[FN? g ondy

p=1J

We can find such a function by solving:

—V2p=0 in U, =g on 9U.



Obtaining the physical pressure

Recall that our modified Cauchy stress is given by:

&€ = JTIPFT = o° — ol.

Sharp interface algorithm:

e Solve harmonic problem
—V2p=0 in U, ¢=g on OU.

e Solve FSI problem with P¢ for variables u and 7.

By construction, [r] = 0 on dx/(U, t).
e Reconstruct the physical pressure
p(x, t) = m(x, t) + o(x " (x, 1), t).




Penalty method

The penalty method is an approach for approximating:

~Viu=0inU
u=gondolU

Multiply by a test function ¢ and integrate by parts:

/Vu-Vnp—/ n-Vup=0
U au

The Dirichlet condition looks almost like a Robin condition:

en-Vu+u=gondlU



Penalty method cont.

Plugging this in gives

/Vu~V<p+6_1/ uap:&:_l/ gy
U ou U

A finite element scheme is then:

Find u, € V}, so that

/Vuh'Vth+s’1/ uhsoh:&:*l/ g ©h
U ou ou

for all pp € Vp.

This approach is also called Nitsche’s method.



Pressure field: thick pre-stressed ring
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Figure: Sharp interface on the right.
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7 and ¢ fields: thick pre-stressed ring
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Figure: The  field is on the left and the ¢ field is on the right.
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Numerical errors: thick pre-stressed ring
with the sharp interface method

steady state, velocity errors
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Pressure field: thick inflating ring

-5870. -2662. 545.0 -5870. -2662. 545.0

Figure: pressure field... sharp interface on the right.
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Deformations: thick inflating ring

I T - Il e -
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Figure: The original IBFE method is on the left and the sharp interface method
is on the right. The coloring in the final configuration corresponds to the
deteminant J = det(F).
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Actively contracting torus

PE(X,t) = pe (F=FT) + T(GH(X), t) Ffo @ fo.

Figure: The mesh for the torus, with the fiber vector field fo superimposed.
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Actively contracting torus

McQueen and Peskin, J Comput Phys, 1989

DO
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Figure: A visualization of contraction. Time increases from left—to—right and
top—to—bottom. The color indicates the value of the tension function.
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Velocity field: actively contracting torus

0.0 65.0 130.0 0.0 65.0

Figure: A slice of the velocity field and active tension function

130.0
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Pressure field: actively contracting torus
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Figure: A slice of the pressure field... sharp interface on the right.
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Unified weak formulation

p (gl:(X, t) + u(x, t) - Vu(x, t)) = =Vp(x, t) + pAu(x, t) +g(x, t)
V-u(x,t) =0

g(x, ) = /U G(X, £)5(x — x(X, £))dX

%(X, t) = /Qu(x, t)o(x — x(X, t))dx
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Unified weak formulation

p (gl:(X, t) + u(x, t) - Vu(x, t)> = =Vp(x, t) + pAu(x, t) +g(x, t)
V-u(x,t) =0

g(x, ) = /U G(X, £)5(x — x(X, £))dX
%’t‘(x, £ = /Q u(x, )3(x — x(X, £))dx

where G(X, t) satisfies:

/G(X, t) - Vi(X) dX:—/]P’e(X, t) : VxVa(X) dX
U U

+ /U Foay (X, £) - Va(X) dX + /8 Fuut(X.£)- V4(X) dA(X)

for all V in some finite element space.



Isovolumetric/dilational split of the stress

given a strain energy density W, we define the PK1 stress in one of two
ways:

through a deviatoric projection:

P = DEV[G—W] + g—g,

1 -
o DEV[s] = (¢) = 3(¢: F)F T

or by using modified invariants: W = W(h, b, ...)

oW AU o g
=oF top F0F

e

Lh(F) =F'F, h(F)=|(trF'F)?> —tr(F'F)?

N -
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