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IB finite element method

U = reference configuration

χ(·, t) = motion map

X ∈ U = Lagrangian coordinates

x ∈ Ω = current coordinates

σ(x, t) = σf(x, t)

+

{
σe(x, t) for x ∈ χ(U, t)

0 otherwise

Ω

χ(U, t)

Figure: fluid–solid system at time t

first Piola–Kirchoff stress:

Pe(X, t) = J(X, t)σe(χ(X, t), t)F−T (X, t), X ∈ U
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Equations of motion

balance of momentum

ρ

(
∂u

∂t
(x, t) + u(x, t) · ∇u(x, t)

)
= −∇p(x, t) + µ∆u(x, t) + f(x, t) + fext(x, t)

mass conservation

∇ · u(x, t) = 0

force density from the solid

f(x, t) =

∫
U

∇X · Pe(X, t) δ(x− χ(X, t))dX

−
∫
∂U

Pe(X, t)N(X) δ(x− χ(X, t))dA(X)

no slip between solid and fluid

∂χ

∂t
(X, t) =

∫
Ω

u(x, t) δ(x− χ(X, t))dX

Boffi et al., Comput Methods Appl Mech Eng, 2008
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First example: thick pre-stressed ring

s ∈ U = [0, 2πR]× [0,w ],

χ(s, 0) = ( cos(s1/R(R + s2) + 0.5, sin(s1/R)(R + γ + s2) ) ,

Pe =
µe

w
F.

U
χ(U, 0)
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Pressure field: thick pre-stressed ring

Figure: Pressure field.
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Numerical errors: thick pre-stressed ring with sharp
interface
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Some ways for dealing with errors at the interface

• immersed interface methods, cut-cell methods: discrete
operators like finite difference stencils are locally modified at the
fluid/solid interface. (LeVeque and Li, SIAM J Num Anal, 1994).

• immersed boundary smooth extension: compute functions that
are “smooth extensions” from the fluid to solid domain, and use
them to modify the forcing on the fluid.
(Stein et al., J Comput Phys, 2016).

Our approach: requires no modification of discrete operators, can deal
with moving interfaces in 2D and 3D, and is not poorly conditioned.
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Discontinuities at the fluid/solid interface

[g(x)] = lim
ε↓0

g(x + εn)− lim
ε↓0

g(x− εn) := g+(x)− g−(x)

continuity of the traction vector implies [σ n] = 0 on ∂χ(U, t).

Ω

χ(U, t)

n

traction vector continuity is Newton’s third law:
“When one body exerts a force on a second body, the second body

simultaneously exerts a force equal in magnitude and opposite in
direction on the first body.”

https://en.wikipedia.org/wiki/Newton%27s_laws_of_motion
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Pressure discontinuity

Using traction vector continuity and σe,+ = 0 on ∂χ(U, t):

−[p] n + µ [∇u + (∇u)T ] n− σe,− n = 0.

Lemma: Let t and b form a basis for the tangent plane to the point at
which we are considering the jump. Then [(∇u) t] = [(∇u) b] = 0.

Proof: Consider a parametrized curve β = β(s) defined on ∂χ(U, t)
that contains the point at which we consider the jump. This curve is
constructed so its tangent vector dβ/ds is equal to t at this point.

d

ds
ui (β(s)) =

dβ

ds
· ∇ui (β(s)) = t · ∇ui (β(s)).
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Pressure discontinuity

−[p] n + µ [∇u + (∇u)T ] n− σe,− n = 0.

Lemma: [n · (∇u) n] = [n · (∇u)Tn] = 0.

Proof: Use the incompressibility condition and [(∇u) t] = [(∇u) b] = 0.

[p] = −n · σe,−n
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Shear stress discontinuity

For a unit tangent vector t to ∂χ(U, t):

µ t · [∇u + (∇u)T ] n = t · σe,−n

This jump condition can be reformulated in terms of the normal
derivative of u:

µ [(∇u) n] = (I− n nT )σe,− n.
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Transforming vectors

Let v be the unit tangent vector to a curve γ(s), i.e.

v =
dγ

ds
.

Also, let γ̃(s) = χ(γ(s)).

d γ̃

ds
=

d

ds
χ(γ(s)) = F

dγ

ds
= F v.
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Transforming area elements

Let N = v ×w be a normal vector in the reference configuration. Define:

n =
F v × Fw

‖F v × Fw‖

to be the normal vector in the current configuration. The ratio of sizes of
area elements is:

dA

da
=
‖v ×w‖
‖F v × Fw‖

=
1

‖F v × Fw‖

This, combined with the identity: F v × Fw = det(F)F−Tv ×w gives
Nanson’s relation:

n da = det(F)F−TN dA.
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Removing the pressure jump

By definition of Pe and Nanson’s relation:

σe n da = Pe N dA and n da = J F−T N dA.

These equations imply:

n =
F−TN

‖F−TN‖
and σe n = J−1 Pe N

‖F−TN‖
,

so the jump in the pressure is:

[p] = −J−1 n · Pe N

‖F−TN‖
.

Idea to “remove” the jump: define a modified stress P̃e so that

n · P̃eN = 0.
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Removing the pressure jump

Let ϕ be some scalar valued function defined on U and

P̃e = Pe − J ϕF−T .

Then n · P̃e N = 0 ⇐⇒ n · PeN = J ϕn · F−TN,

implying we want ϕ to satisfy:

ϕ = J−1 F−TN

‖F−TN‖2
· PeN := g on ∂U.

We can find such a function by solving:

−∇2ϕ = 0 in U, ϕ = g on ∂U.
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Obtaining the physical pressure

Recall that our modified Cauchy stress is given by:

σ̃e = J−1P̃eFT = σe − ϕI.

Sharp interface algorithm:

• Solve harmonic problem
−∇2ϕ = 0 in U, ϕ = g on ∂U.

• Solve FSI problem with P̃e for variables u and π.
By construction, [π] = 0 on ∂χ(U, t).

• Reconstruct the physical pressure
p(x, t) = π(x, t) + ϕ(χ−1(x , t), t).
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Penalty method

The penalty method is an approach for approximating:

−∇2u = 0 in U

u = g on ∂U

Multiply by a test function ϕ and integrate by parts:∫
U

∇u · ∇ϕ−
∫
∂U

n · ∇u ϕ = 0

The Dirichlet condition looks almost like a Robin condition:

εn · ∇u + u = g on ∂U
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Penalty method cont.

Plugging this in gives∫
U

∇u · ∇ϕ+ ε−1

∫
∂U

u ϕ = ε−1

∫
∂U

g ϕ

A finite element scheme is then:

Find uh ∈ Vh so that∫
U

∇uh · ∇ϕh + ε−1

∫
∂U

uh ϕh = ε−1

∫
∂U

g ϕh

for all ϕh ∈ Vh.

This approach is also called Nitsche’s method.
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Pressure field: thick pre-stressed ring

Figure: Sharp interface on the right.
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π and ϕ fields: thick pre-stressed ring

Figure: The π field is on the left and the ϕ field is on the right.
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Numerical errors: thick pre-stressed ring
with the sharp interface method
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Pressure field: thick inflating ring

Figure: pressure field... sharp interface on the right.
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Deformations: thick inflating ring

Figure: The original IBFE method is on the left and the sharp interface method
is on the right. The coloring in the final configuration corresponds to the
deteminant J = det(F).
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Actively contracting torus

Pe(X, t) = µe

(
F− F−T

)
+ T (G−1(X), t)F f0 ⊗ f0.

Figure: The mesh for the torus, with the fiber vector field f0 superimposed.
24



Actively contracting torus

McQueen and Peskin, J Comput Phys, 1989

Figure: A visualization of contraction. Time increases from left–to–right and
top–to–bottom. The color indicates the value of the tension function.
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Velocity field: actively contracting torus

Figure: A slice of the velocity field and active tension function
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Pressure field: actively contracting torus

Figure: A slice of the pressure field... sharp interface on the right.
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Unified weak formulation

ρ

(
∂u

∂t
(x, t) + u(x, t) · ∇u(x, t)

)
= −∇p(x, t) + µ∆u(x, t) + g(x, t)

∇ · u(x, t) = 0

g(x, t) =

∫
U

G(X, t)δ(x− χ(X, t))dX

∂χ

∂t
(X, t) =

∫
Ω

u(x, t)δ(x− χ(X, t))dx

where G(X, t) satisfies:∫
U

G(X, t) · Vh(X) dX = −
∫
U

Pe(X, t) : ∇XVh(X) dX

+

∫
U

Fbdy(X, t) · Vh(X) dX +

∫
∂U

Fsurf(X, t) · Vh(X) dA(X)

for all V in some finite element space.
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Unified weak formulation

ρ

(
∂u

∂t
(x, t) + u(x, t) · ∇u(x, t)

)
= −∇p(x, t) + µ∆u(x, t) + g(x, t)

∇ · u(x, t) = 0

g(x, t) =

∫
U

G(X, t)δ(x− χ(X, t))dX

∂χ

∂t
(X, t) =

∫
Ω

u(x, t)δ(x− χ(X, t))dx

where G(X, t) satisfies:∫
U

G(X, t) · Vh(X) dX = −
∫
U

Pe(X, t) : ∇XVh(X) dX

+

∫
U

Fbdy(X, t) · Vh(X) dX +

∫
∂U

Fsurf(X, t) · Vh(X) dA(X)

for all V in some finite element space.
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Isovolumetric/dilational split of the stress

given a strain energy density W , we define the PK1 stress in one of two
ways:

through a deviatoric projection:

Pe = DEV
[∂W
∂F
]

+
∂U
∂F

, DEV[•] = (•)− 1

3
(• : F)F−T

or by using modified invariants: W̄ = W (Ī1, Ī2, . . .)

Pe =
∂W̄

∂F
+
∂U
∂F

, F̄ = J−1/3F

I1(F) = FTF, I2(F) =
1

2

[
(trFTF)2 − tr (FTF)2

]
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