

MATHEMATICS AND BIOLOGY

MATH-UA 255 and BIOL-UA 255

Syllabus

Professors Daniel Tranchina

Fall 2018

Required Textbook

Hoppensteadt, F. and Peskin, C.S. (2002), Modeling and Simulation in the Life Sciences, 2nd ed., Springer. Available online (pdf) through NYU Library Springer Link

Prerequisites

Calculus I and Introductory Biology

Week 1

The Heart and Circulation

1.1 Plan of the Circulation	5
1.2 Volume, Flow, and Pressure	7
1.3 Resistance and Compliance Vessels . . .	8
1.4 The Heart as a Pair of Pumps . . .	10
1.5 Mathematical Model of the Uncontrolled Circulation . . .	14

Week 2

The Heart and Circulation

1.5 Mathematical Model of the Uncontrolled Circulation . . .	14
1.6 Balancing the Two Sides of the Heart and the Two Circulations	18
1.7 The Need for External Circulatory Control Mechanisms	20
1.8 Neural Control: The Baroreceptor Loop. . . .	21

Week 3

The Heart and Circulation

1.9 Autoregulation	25
1.10 Changes in the Circulation Occurring at Birth	28
1.11 Dynamics of the Arterial Pulse	33

Week 4

Gas Exchange in the Lungs

2.1 The Ideal Gas Law and the Solubility of Gases	76
2.2 The Equations of Gas Transport in One Alveolus	78
2.3 Gas Transport in the Lung	82
2.4 Optimal Gas Transport	83

Week 5

Gas Exchange in the Lungs

2.4 Optimal Gas Transport	83
2.5 Mean Alveolar and Arterial Partial Pressures	85
2.6 Transport of O ₂	87

Week 6

Control of Cell Volume and Electrical Properties of Cell Membranes

3.1 Osmotic Pressure and the Work of Concentration . . . 109

3.2 A Simple Model of Cell Volume Control 113

3.3 The Movement of Ions Across Cell Membranes . . 115

Week 7

Control of Cell Volume and Electrical Properties of Cell Membranes

3.4 The Interaction of Electrical and Osmotic Effects	118
3.5 The Hodgkin-Huxley Equations for the Nerve Action Potential	124

Week 8

Control of Cell Volume and Electrical Properties of Cell Membranes

3.5 The Hodgkin-Huxley Equations for the Nerve Action Potential	124
---	-----

MIDTERM, Tuesday, October 25.

Week 9

The Renal Countercurrent Mechanism

4.1 The Nephron.	147
4.2 Dynamics of Na^+ and H_2O : Transport along the Renal Tubules	150
4.3 The Loop of Henle	152

Week 10

The Renal Countercurrent Mechanism

4.3 The Loop of Henle	152
4.4 The Juxtaglomerular Apparatus and the Renin-Angiotensin System	155
4.5 The Distal Tubule and Collecting Duct: Concentrating and Diluting Modes . . .	157

Week 11

The Renal Countercurrent Mechanism

4.5 The Distal Tubule and Collecting Duct: Concentrating and Diluting Modes . .	157
4.6 Remarks on the Significance of the Juxtaglomerular Apparatus	158

Week 12

Muscle Mechanics

5.1 The Force-Velocity Curve	171
5.2 Crossbridge Dynamics	173

Thanksgiving

Week 13

Muscle Mechanics

5.2 Crossbridge Dynamics	173
------------------------------------	-----

Week 14

Epidemiology

Epidemics (Lecture notes to be distributed)

Endemics (Lecture notes to be distributed)

Week 15

Epidemiology

Endemics (continued)

Discussion of final exam questions

Closing remarks

Course Grades

Course grades are based on graded homework assignments, midterm and final examinations.

Each accounts for one-third of the overall grade.

Office Hours

Tuesdays 10:30 am – 12:30 pm, room 918 Courant Warren Weaver Hall

Appointments outside formally scheduled office hour are welcome.