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Abstract. We propose a novel iterative method for the solution of linear systems that acceler-
ates the convergences of Richardson iteration by simultaneously building an eigenvector basis. This
method is particularly suited for matrices with substantial eigenvalue gaps, exemplified by the Page-
Rank problem. In other scenarios, our scheme performs comparably to Richardson iteration. Our
analysis currently assumes all system matrix eigenvalues to have positive real parts.

1. Introduction. Randomized algorithms are an exciting new class of fast nu-
merical methods that offer accurate solutions to many problems in numerical linear
algebra (NLA) while also scaling well to large datasets. Many randomized algo-
rithms aim to ‘sketch’, or quickly project, a high-dimensional problem into a lower-
dimensional basis where a smaller problem can be solved instead [1][5]. The choice of
basis and the speed of its construction play a key role in determining the effectiveness
of a sketched matrix computation [4]. Moreover, one may be particularly interested
in rigorously justifying the acquired speed-up; this analysis is also dependent on how
the basis is constructed [3].

We propose a scheme to iteratively build a basis of eigenvectors to solve a linear
system. More specifically, our scheme amounts to performing subspace iteration [2],
an extension of power method, to achieve a faster algorithm. This scheme also yields
computational speedups for certain applications, like the PageRank problem; we pres-
ent these results in section 3.

2. Random Starting Subspace Iteration. Here we present an algorithm to
solve a linear system

(2.1) Ax = b,

where A ∈ Rn×n and b are known and the goal is to find x to satisfy this equality.
We assume that all eigenvalues of A have positive real part and we choose ε > 0 so
that the spectral radius of I − εA is less than 1. If A has eigenvalues with negative
real part we can instead consider the equation A>Ax = A>b. Our scheme, which we
call ‘Random Starting Subspace Iteration (SI)’, is detailed in Algorithm 2.1.

Forming the matrix

(2.2) Y =
(
ε
∑q−1
j=0(I − εA)jb (I − εA)qΠ

)
,

amounts to repeatedly multiplying an augmented matrix,

(2.3) Ā =

(
1 0
εb I − εA

)
.

by another augmented matrix of the form Π̄ =

(
1 0
0 Π

)
and we get,
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Algorithm 2.1 Random Starting Algorithm

Input: Matrix A ∈ Rn×n, right-hand side b ∈ Rn, spectral radius normalizing con-
stant ε, number of iterations q, size of the subspace k.

Output: Approximate solution x̂ to the linear system 2.1.
1: function Random Starting SI
2: Choose a random sketch matrix Π ∈ Rn×(k−1).
3: Form the matrix Y ∈ Rn×k, Y =

(
ε
∑q−1
j=0(I − εA)jb (I − εA)qΠ

)
.

4: Perform a QR decomposition, Y = QR.
5: Solve the k × k linear system Q>AQc = Q>b for c ∈ Rk×k.
6: Construct the approximate solution Qc = x̂.
7: end function

ĀqΠ̄ =

(
1 0

ε
∑q−1
j=0(I − εA)jb (I − εA)qΠ

)
.

This construction, particularly the motivation for I − εA, is non-obvious and we
dedicate the Appendix (section 5) to its justification.

3. Results. We first present results numerically demonstrating that the conver-
gence rate of our method depends on gaps between eigenvalues in the spectrum of
A. Figure 3.1 presents both adversarial and amicable cases to show that a gap in the
spectrum leads to faster convergence. We then describe the PageRank problem, an
application where our random starting scheme performs especially well.

3.1. Application: PageRank problem. The PageRank problem, with appli-
cations in web search and other fields like social networks and protein network analysis,
seeks to rank nodes in a graph based on their relative importance. The crux of the
problem lies in determining the stationary distribution of a related Markov chain. A
prevalent method to solve this involves an iterative algorithm that successively multi-
plies a vector by the matrix A = I −ωP , where ω is a specified probability (typically
set to 0.85, representing the likelihood of a user continuing their random walk), and
P is the stochastic matrix embodying the structure of the network. The algorithm
continues until the ranks converge within a designated tolerance, thus providing a
solution to the PageRank problem. Figure 3.2 visually encapsulates the faster conver-
gence rate that our Random Starting SI method exhibits when solving the PageRank
problem. The chart illustrates how the presence of a significant spectral gap in the
system matrix A = I − ωP influences the speed of convergence. This validates our
mathematical assumptions about the relationship between the eigenvalue gap and
convergence speed.

4. Discussion. Our proposed Random Starting SI method leverages iteratively
constructed eigenvector bases to solve linear systems efficiently. Our results reveal
that the eigenvalue gap in the system’s spectrum has a significant impact on the
convergence speed. The algorithm performs well when a gap exists, as seen in use-
cases like the PageRank problem, but comparably to traditional gradient descent in
cases where the spectrum lacks significant gaps. Our current analysis, as presented
in the Appendix, assumes all eigenvalues of the system matrix to have positive real
parts and generalizing this analysis further is one future direction for our work.
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(a) Illustration of convergence rate, measured
in q number of matrix-vector multiplications
by the matrix Ā. In this case, the spectrum
of A inside the augmented matrix is graphed
in 3.1b. The slopes of convergence for Richard-
son iteration and our random starting scheme
are very similar.
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(b) Spectrum of a matrix where ei-
genvalues are uniformly arranged.
The gap between any two eigenvalues
is the same throughout the spectrum.
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(c) Illustration of convergence rate for a ma-
trix whose spectrum is depicted in 3.1d. The
random starting scheme converges at a much
faster rate than Richardson iteration, as indi-
cated by the significant difference in slopes.
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(d) Spectrum that is exactly the
same as in 3.1b, but the smallest 10
eigenvalues are set to 1. This cre-
ates an order of magnitude gap in the
spectrum.

Fig. 3.1: An illustration of the effect a gap in the spectrum of eigenvalues has on
the convergence rate of our scheme as opposed to Richardson iteration. Figures 3.1a
and 3.1b illustrate the convergence in the adversarial case for our random starting
scheme. Figures 3.1c and 3.1d illustrate the effect of a gap in the spectrum has on the
convergence; namely, this results in a significantly faster convergence rate. For both
cases, the size of the subspace, k, is held constant at 20.

5. Appendix. This section is primarily dedicated to motivating the construction
of the augmented matrix in 2.3. In section 5.1 we first show that performing repeated
applications of Ā to a non-zero vector is equivalent to performing Richardson iteration
on the matrix A. In section 5.2, we opt for a fixed-point analysis in to demonstrate
convergence in a simpler case with a starting vector as opposed to a subspace.

5.1. Ā
(
1 x>0

)
amounts to power iteration on I − εA.

Proof. Let Ā be defined as in 2.3, let x0 be any non-zero vector, let q be the
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(a) Illustration of convergence rate for a ma-
trix of the form A = I − ωP where ω ∈ [0, 1]
and P is a stochastic matrix. The random
starting algorithm leverages the gap in the
spectrum, as seen in figure 3.2b, to achieve a
much faster convergence rate than Richardson
iteration.
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(b) Graph of the spectrum of the ma-
trix described in the PageRank prob-
lem. We can see that there is a col-
lection of small eigenvalues, a sizable
gap, and a collection of large eigen-
values.

Fig. 3.2: Illustration of the correlation between the spectral gap in the system matrix
and the convergence speed of the Random Starting SI method. The graph captures
the comparative performance with a clear gap (example: PageRank problem) versus
those lacking a significant gap. The x-axis represents the size of the spectral gap,
while the y-axis measures the rate of convergence.

number of iterations (matrix-vector multiplications). We will show that performing

power method with Ā as the operator and with

(
1
x0

)
as the starting vector amounts

to performing Richardson iteration to solve Ax = b. First, consider(
1

xq+1

)
= Āq+1

(
1
x0

)
= Ā

(
1
xq

)
=

(
1

εb + (I − εA)xq

)
.

Since the first entry is always equal to 1, we now focus on the remaining entries in
the vector and notice that

(5.1) xq+1 = εb + (I − εA)xq.

Re-expressing this in terms of x0, we get

(5.2) xq+1 =

ε q∑
j=0

(I − εA)jb

x0.

This is the definition of Richardson iteration.

5.2. Random Starting SI converges (one starting vector).

Proof. Assuming that A is symmetric, we will show that Āq
(

1
x0

)
converges to(

1
x∗

)
for sufficient q iterations. First, note that the first entry in both the starting

vector and the desired vector is 1. Hence, only focus on the remaining entries.
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We recall equation 5.1 and consider that relation with respect to the solution
vector x∗

xq+1 − x∗ = εb + (I − εA)xq − x∗,

and we rearrange some terms to get

xq+1 − x∗ = εAx∗ + (I − εA)xq − x∗.

Finally, re-expressing our relation in terms of x0, we get

(5.3) xq+1 − x∗ = (I − εA)q(x0 − x∗).

Notice that x0 − x∗ is a fixed-point where I − εA is the operator. From this we
can infer that the convergence, measured by the difference xq+1 − x∗, is dominated
by (I − εA)q. A spectral decomposition of this matrix reveals

(5.4) (I − εA)q = U>


(1− ελn)q 0 · · · 0

0 (1− ελn−1)q · · · 0
...

...
. . .

...
0 0 · · · (1− ελ1)q

U,

where U is an orthonormal matrix and the eigenvalues are organized in descending
order inside of a diagonal matrix.

Choosing ε < 1
λ1

, we see that I−εA tends to zero at a rate of 1−ελn−1

1−ελn
< λ1−λn−1

λ1−λn
.

We can rearrange some terms

λ1 − λn−1
λ1 − λn

= 1− λn−1 − λn
λ1 − λn

,

and we obtain the following rate

(5.5)

1− 1(
λ1−λn

λn−1−λn

)
q

≤ exp

(−q(λn−1 − λn)

λ1 − λn

)
.

We can thus conclude that

‖xq+1 − x∗‖ = ‖ (I − εA)
q

(x0 − x∗) ‖
≤ ‖ (I − εA)

q ‖‖x0 − x∗‖

≤ exp

(−q(λn−1 − λn)

λ1 − λn

)
‖x0 − x∗‖.

REFERENCES
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