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ABSTRACT

A common error in the administration of Plasmapheresis (plasma exchange)
procedures is the switching of inflow and outflow ports to the plasma exchange
machine, resulting in the outflow port being upstream from the inflow port.
In this paper, mathematical methods are used to determine under what condi-
tions any significant consequences arise from such an error. We find that when
full cardiac output passes into the plasma exchange circuit, the effects of the
swapped configuration are insignificant.

1 Introduction

Plasmapheresis, Therapeutic Plasma Exchange (TPE), or Plasma Exchange
Therapy (PET) refer to the removal and exchange of a patient’s blood plasma
in order to treat a variety of conditions, including many autoimmune disorders.
Practitioners use three primary methods to perform the exchange: discontin-
uous flow centrifugation, continuous flow centrifugation, and plasma filtering.
This paper is concerned with continuous flow centifugation. Patients are often
connected to the TPE mechanism via an ECMO (Extracorporeal Membrane
Oxygenation) Machine rather than directly to the body.

In many TPE procedures, the inflow and outflow ports to the centrifugal
chamber of the plasma exchange mechanism are accidentally reversed by prac-
titioners. This paper presents several modeling techniques used to investigate
whether switching the inflow and outflow ports has significant consequences for
the TPE process.

1.1 Notation

@ measures the total blood flow from the ECMO Machine in mL/sec. This flow
continues into TPE circuit. ¢ represents the flow of blood into the centrifugal
chamber of the TPE Machine, where it undergoes a plasma exchange. The
condition ;1 < @ must always be satisfied for conservation of blood volume, V.



"Plasma’ refers to all the components of blood except for blood cells, and is
about 55% of blood by volume, thus the parameter [P]o = 0.55 is the concen-
tration of plasma in a given volume of blood.

The modeling approach follows the variable v, defined as the fraction of new
plasma (post-exchange) to total plasma in a given volume of blood. Due to
bifurcations in the TPE system, it will have different values at different points
in the system and in the body, thus v will be sub-scripted accordingly.

It is important to note that both v and [P]y are dimensionless variables,
where 7 - [P]o - V represents the total volume of new plasma.

2 ODE Model
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Figure 1: Schematics of the typical (left) and switched (right) configurations.

In Figure 1 we show a schematic of the TPE setup for both the typi-
cal/normal and the switched configuartions. We make two important simpli-
fying assumptions. We assume old plasma is completely exchanged for new
plasma, implying volume of plasma per unit time flowing out of the machine is
Q1[PJo. We also assume old and new plasma are instantaneously mixed at the
junction where outflow from the TPE machine meets the rest of the flow. This
junction is circled in Figure 1. Under these assumptions, conservation of new
plasma at the circled junction in the normal and switched configurations is:

(normal)  va(t)Q[Plo = Q1[Plo +v(t)(Q — Q1)[Plo (1)
(switched) 7vq4(t)(Q + Q1)[Plo = @Q1[Plo + v(t)Q[P)o- (2)

Notice that v4(t)Q[P]o is new plasma inflow into the ECMO machine/body
compartment, while v(¢)Q[P]o is the new plasma outflow. The change in new
plasma per unit time, equal to inflow minus outflow, can be represented by the
differential equation:

d

7 VOPV) = 1a(t)Q[Plo — 7(t)Q[Flo, (3)



where V' is a parameter equal to the blood volume in the ECMO machine/body
compartment of the model, shown in Figure 1. Substituting (1) or (2) into (3)
and dividing through by V and [P]y, we obtain differential equations for the
fraction of new plasma in the normal and switched configurations:
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A related model can be derived by introducing a delay s, which should be
interpreted as the characteristic travel time required for a parcel of new plasma
to traverse the ECMO machine/body compartment. With this assumption,
~va(t) = v(t + s). Substituting this equality into equations 1 and 2 results in a
set of algebraic delay equations for the fraction of new plasma in the normal
and switched configurations:

(normal) £1(t) = 2% (1 (1) (@

(switched)

(normal) A(t +s) = (t) + %(1 () (6)
(switched) ~(t+s)=~(t) + g fl o (1—~(t)). (7)

These delay equations can be solved numerically, but also are related to 4
and 5. The time delay s, in minutes, is small compared to the overall variation
in 7(t), which occurs over the course of hours. In this light, it reasonable to
approximate the time derivative of y(t) with the difference quotient:

d Yt +5) =)
ZA(0) : 5)
Upon rewriting 6 and 7 and substituting the difference quotient for the time
derivative, we obtain:

(normal) - +(0) = 5 G (1= 4(0) )
(switched) %y(t) - é Qfl 51700 (10)

In other words, the delay equations, rewritten as differential equations under

the assumption of a small delay time, are exactly those obtained in 4 and 5 with
v

s$= 5.
Q
The differential equations appearing above take the general form:

d
(1) = B =), (1)
o (i@ 1 _@
W0 =0 B= (-2 155 (12
The solution is expressed analytically as
Y(t) =1 — exp(—pt) (13)



2.1 Results of the ODE Model

Results from these models are computed with a nominal set of parameters for a
typical patient. We use the relationship s = ¥ | so two of the three parameters
@, V, or s can be chosen independently. We choose to fix Q and s in our
simulations. Concentration of plasma in blood is [P]g = 0.55, total flow is Q
= 83.3 mL/sec, TPE machine flow is @1 = 1.5 mL/sec, and the time delay
is s = 60 sec. In Figure 2, we use equations (9) and (10) to plot the new
plasma concentration as functions of time for both the normal and switched
configurations. In the left panel is the new plasma concentration, and on the
right panel is the relative difference in new plasma concentration between the
two configurations. Figure 3 contains results analogous to those in Figure 2,
but for the delay equations (6) and (7). It is clear that while there exists a
positive difference between the two methods, the magnitude of the difference is
insignificant in a clinical setting.
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Figure 2: Comparing the normal and switched configurations using the differen-
tial equations (9) and (10). On the left is the new plasma concentration plotted
as a function of time. On the right is the relative difference in new plasma
concentration between the two configurations.
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Figure 3: Comparing the normal and switched configurations using delay equa-
tions (7) and (8). On the left is the new plasma concentration plotted as a
function of time. On the right is the relative difference in new plasma concen-
tration between the two configurations.



3 Fractional Cardiac Output ADE Model
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Figure 4: Schematics of the normal (left) and switched (right) configurations.

Since TPE Machines are often connected to ECMO Machines, in this section
we generalize the previous model by removing the assumption that the full
cardiac output @) passes through the machine (i.e. the TPE Machine is indirectly
connected to the patient).

We define another dimensionless variable a € [0, 1] to represent the fraction
of cardiac output undergoing the plasma exchange procedure. Meanwhile, (1 —
)@ will pass through a second compartment of the machine—following a path
which takes s; seconds to complete, with fraction of new plasma 4(¢). In the
following equations, so represents the delay associated with blood circulation in
the body. Additionally, 7(¢) represents the fraction of new plasma after mixing
point 1. As in Section 2.1, v4(t) represents the fraction of new plasma in the
blood downstream of the system.

3.1 Typical Configuration

We begin by considering the following conservation equations for the typical
setup of the TPE Machine:

(Point 1) () - aQ[Plo = Q1[Plo +~(t)(eQ — Q1)[Plo (14)
(Point  2) #(t)(1 — @)Q[P)o +7(t) - aQ[P)o = va(t)Q[P]o (15)

Additionally we have the delay conditions:
ECMO/Body delay : ~4(t) = v(t + s2)

Compartment delay : () =45t + s1)



Rearranging the equations we arrive at the delay equation:

() = (o - %ma st (-t — s —s)+ & (6)

Q

Which imposes the new condition ¢ > (s1+s2). Yet if we revert to analyzing
~v(t) = va(t — s2), we arrive at the equation:

wm)=<a—%>~w<t>+<1—a>-w<t—sl>+% (17)

which combined with the initial condition v(¢ < 0) = 0 yields v(s2) = %

3.2 Switched Configuration

Under the switched configuration we use the following equations:

(Point 1) F(t)(aQ + Q1)[Plo = Q1[Plo + v(t)aQ[Plo (18)
(Point  2)  A(t)(1 — a)Q[Plo +7(t)aQ[Plo = a(t)Q[Plo (19)
ECMO/Body delay : ~4(t) = v(t + s2)
Compartment delay : () =45t + s1)
We again solve for 4(t) and 7y4:
. Qi +y(t) - aQ
o = LI
_ (@ +7(t) - aQ)
Ya(t) = o0+ O +(t —s1)(1 - a)
Which results in the delay equation
o2
At 52) = 5ol + (Lt —s) + 52 (20

a@ + Q1

We can validate that the two models agree with each other by showing that
equation (6) = (17) and (7) = (20) when a =1 and sp = s.

(normal) ~(t+s) =~(t) + %(1 — (%)

~ _ o Q Q1 Q1 B
(switched)y(t+s2) = y(t+s) = 010, W(t)‘f'Q R 7(t)+Q O (1—~(t))
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Figure 5: Comparing the normal and switched configurations while varying «
(with s1 = 53 sec fixed) using equations (17) and (20). On the left is the new
plasma concentration plotted as a function of time. On the right is the relative
difference in new plasma concentration between the two configurations.
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Figure 6: Comparing the normal and switched configurations while varying s;
(with @ = 0.3 fixed) using equations (17) and (20). On the left is the new
plasma concentration plotted as a function of time. On the right is the relative
difference in new plasma concentration between the two configurations.

3.3 Results of the Fractional Output ADE Model

The delay equations (17) and (20) are not solvable analytically, yet we can
simulate results with nominal parameters that represent the typical patient.
We can no longer take advantage of the relationship s = %, and must choose
all parameters (discussed in section 4). In the results shown in Fig. 5 and 6,
V =5000 mL, Q = 83.3 mL/sec, Q1 = 1.5 mL/sec, and s = 60 sec.

In each case, the flow of blood with new plasma ()1 remains fixed. However,
it is clear that decreasing « leads to significant increases in the disparity between
the configurations. Nevertheless, the difference remains inconsequential.



4 Modeling Circulatory Transit Time

The validity of the prior models rest on the assumption of a single transit time for
blood throughout the body. In the following two sections, we attempt to remove
the assumption of a scalar delay time for circulatory transit. The previously
assumed circulatory delay of s = 60 sec represents the average delay time based
on a body with 5 L of blood, and cardiac output of 83.3 mL /sec (average values
for human beings). However, it is evident that due to the geometry of the
body and the geometry of our circulatory system, that the multitude of possible
paths a blood cell could travel should not be represented by a scalar variable,
but rather by a distribution.

Empirical data has shown that vascular transit times can be modelled as
a Gamma distribution (s ~ I'(a,b)) [Mou+14]. We maintain that E[s] = 60
sec by the motivation above, choosing distribution parameters a,b such that
E[s] = § = 60. The Gamma distribution is only defined for positive real values,
which is a important qualitative feature in this context, but more importantly,
it is not a symmetrical distribution (the consequences of which are discussed as
they pertain to each model below).
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Figure 7: Gamma Distribution with E[s] = ¢ = 60 sec for different a, b.

4.1 Random Travel Time Model

We return to the analytic solution of the full cardiac output ODE model (Eq.
13), written in the form:

v(#)=1- exp(%Kt)7 (21)

with K,, = =91 iy the normal configuration and Ky = Q_+QQ11 in the switched
case. The purpose of this form is to isolate the circulation time parameter s
from the flow parameters.

Out first method, to incorporate the transit time distribution, is to create

sample means from the analytic solution using a scalar transit time sampled from



a distribution of travel times. We expect these sample means to be normally
distributed, which will allow us to analyze E[y(t)] and the standard error.

4.2 Results of the Random Travel Time Model
The results of the Random Travel Time Model are exhibited in Figures 8-10
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Figure 8: Plotting 1,000 sample means of the normal and switched configura-
tions with s ~ I'(2,1/30) using equation (21).
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Figure 9: Comparing the mean of normal and switched configuration sample
means with s ~ I'(2,1/30) using equation (21). On the right is the standard
error for the normal and switched configurations, where it is clear that error
reaches a maximum and damps out with time.

4.3 Convolution Integral Model

We introduce a new perspective of modeling v(¢) called the convolution integral
[Zie00; Krz19]. The schematic of the model is shown in Fig. 10. We claim
that a sample of homogeneously mixed blood, where circulatory transit time
is Gamma distributed, will contain “blood particles” whose transit times are
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Figure 10: Comparison of the SDE Model (blue) and the analytic solution to
the ODE Model (black) in the normal and switched configurations using the
results above. The asymmetry of the Gamma distribution creates the case that
E[v(t; )] need not equal y(¢, E[s]). The stochastic curve begins increasing faster
than the single transit time model, yet eventually gets overtaken.
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Figure 11: Schematics of the convolution integral system.

Gamma distributed. Thus, given v4(¢) a function of v(t), and the transit time
probability density function h(7) ~ I'(a,b) we can write

~(t) = /0 Ya(t = 7) - h(r;a,b)dr (22)

Where ~(t) represents the fraction of new plasma to total plasma in the
blood entering the TPE/ECMO machine.

In this case we return to the system described in Section 2.1. We use the
conservation equations to solve for 74(t) in terms of () in the normal and
switched configurations:

_Q Q@

(normal)  ~q(t) 0 ) (23)
. @ Q
(switched) ~4(t) = 0+ 0, +’y(t)Q o, (24)

This assumes the TPE process is instantaneous. If we would like to take
into account a delay (s) for the plasma exchange, the equations become:
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(normal) ~4(t) = % +(t— s)% (25)
(switched) ~4(t) = 0 leQl +(t—s) 0 le (26)

While we can’t solve these equations analytically, we can simulate their re-
sults using nominal parameters that represent a typical patient. In the following
results a = 2, b = 0.033, V =5 L, @ = 83.3 mL/sec, and 1 = 1.5 mL/sec.
Note that when creating a numerical scheme for simulation, the convolution is
insensitive to direction of convolution.

Claim: Convolution is not sensitive to direction
t

~(t) = / Ya(t = 7) - h(r;a,b)dr
0

with dummy variable 7/ =t — 7, d7’ = —dr we rewrite Equation (22) as:

0 t
~y(t) = f/t Ya(T') - h(t — 7’5 a,b)dr = /0 va(7") - h(t — 7’50, b)dr’

4.4 Results of the Convolution Integral Model
The results for the Convolution Integral Model are shown in Fig. 12 - 14.
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Figure 12: On the left: A comparison of the normal and switched configurations
using equations 23, 24. On the right: a comparison of the Convolution Integral
using equation 23 (black) and the ODE Model using equation 13 (blue). The
results regarding switching the configuration of the TPE machine remains the
same, and our solution agrees with the ODE Model.
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Figure 13: The convolution integral model is qualitatively different than the
ODE model-namely, its second derivative is positive at the start of the treat-
ment. The second derivative of the solution is positive a the beginning of treat-
ment, with a corresponding point of inflection at the maximum of the first
derivative.
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Figure 14: Fraction of new plasma in blood while varying delay parameter s
seconds. The convolution integral model has a different and far more severe
sensitivity to a TPE machine delay than previously observed. A machine asso-
ciated delay causes rapid jumps in () which damp out in time, yet it drastically
slows the process.

5 Conclusion

Under various modeling schemes with varying degrees of granularity, we find
that the switched configuration is only significantly slower in the case where a
very small fraction of cardiac output enters the centrifugation chamber. How-
ever, even though in this case the length-scale of the procedure is increased, it
is not compromised.

We are currently implementing Immersed Boundary CFD simulations to
understand how mixing depends on the machine geometry to test the assump-
tion of perfect, instantaneous mixing. Early simulations lead us to believe that
geometry can optimized to validate the assumption.
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