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Preface

The following is a report based on work completed as part of the 10-week
Applied Mathematics Summer Undergraduate Research Experience (AM-SURE)
program, hosted by the Courant Institute of Mathematical Sciences at New York
University during the summer of 2023. All mistakes are my own.

1 Factor discovery through optimal transport

1.1 The factor discovery problem

Consider a dataset of observations {x'} realized from some unknown distribution
p(x|2)7(2), where 2 € R? is our variable of interest.

The goal of the factor discovery problem is to construct factors z, which
are in general vector-valued, that explain the behavior of x. Having such an
explanation lends itself to several uses. One such use is the ability to make
predictions of x. Another is the construction of a simpler representation of x.
Some well-known existing procedures for accomplishing the latter are clustering,
which identifies a discrete-valued z that represents the class of each observation,
and the method of principal components, which identifies a continuous-valued z
that reduces the dimensionality of the observations while preserving meaningful
variability.

The—as of this writing—unpublished draft “Factor discovery through op-
timal transport” [Tabak, 2023] provides a far more detailed treatment of the
factor discovery problem, which has been simplified and condensed here.

1.2 The barycenter problem with known factors

Suppose, for a moment, that known factors z; are provided with the dataset
{z’,2}.}. To extract the relationship between the factors z and the observations



x, we seek a transformation y = T'(z, z) that removes all variability among the
observations that is attributable to zx. In other words, the transformed data y
should be independent of zy:
y Lz (1)
However, we do not wish to explain away more variability than just that
attributable to z,. Otherwise, we could simply transform all of the observations
to a single point, leaving them absolutely indistinguishable! Therefore, we will
seek the transformation that simultaneously minimizes an integral of the trans-
port cost ¢(z,y) required to deform the source distribution p(z) into the target
distribution u(y). This is a formulation of the barycenter problem in optimal
transport:

argmin // c(x,y)p(z|z)y(z)dedz  such that y L z. (2)
y=T(z,z)

1.3 The complete statement of the factor discovery
problem with hidden factors

Now, in the reality of the factor discovery problem, we will not have access to
these known factors z;. Even if we do, our objective still lies in discovering new,
hidden factors zj. Recall that, at a high level, we seek

min Variability (T} (p(x), v(21))

— min Variability (1(y)) (3)

for some definition of Variability(), all while minimizing the deformation caused
by the transport map T(x,z). In the case of the canonical, quadratic cost
() = |} — |12, we define

Variability (u m1n/||y 9112y
— [ Iy~ EW)iuts) y @
= o”(u(y)),

which is simply the variance. Omitting some details, it can then be proven, still
adhering to the quadratic cost, that

o?(u(y)) = o (u(y)) +[ min // I - ylPo(zl2)1(z) dzdz sty L za). (5)

yT(JC)

In order words, the variance of the original distribution can be decomposed
into a sum: the variance of the transformed distribution plus the reduction in
variance imputed to transport. Although Equation 5 shows a relation specific
to the quadratic cost, it is natural to state, more generally, that

Variability (p(z))

= Variability (u(y)) + rTr%m )// c(z,y)p(z|z)y(z)dedz s.t. y L zp],
y T.zn

(6)



which can be made rigorous by a careful choice of Variability ().

Since Variability(p(x)) is fixed in our problem, we can—rather than min-
imize Variability(u(y))—instead maximize the transport cost over zj,. Thus,
we can augment the minimization problem in Expression 2 to arrive at our
complete problem statement of factor discovery through optimal transport:

max [ min // c(z,y)p(z|2)y(z)dzdz  such that y L zp| . (7)

zn  |y=T(x,z)

2 Clustering as a form of factor discovery

2.1 A relaxation to k-means
If the sought factor is known to be discrete, meaning that
2 € {21,220 2py e 2k} Vi (8)

the factor discovery problem becomes clustering; we seek to partition our dataset
{z'} into k classes. In the case of such a discrete, categorical factor, a natural
relaxation of the full independence condition is to demand that the conditional
mean y(z) of the transformed data be independent of z. Figure 1 provides a
rough illustration of such a transformation. Note that, in general, the condi-
tional distributions (labeled as clusters 1, 2, and 3 in this data-driven case) need
not and will not be isomorphic.

o 2 ol
FATRIA
’::o.. .o.o . .

..1. 00 o ....:: x ..0.0
:o.:. O..’. 3 Y ..00.0..°.
...o......o.o 0‘.. .o.o 00.0 &

:o.o. e o.oo:. P .'.0.0 \
e0 0% 0,
X J ..

Figure 1: Transforming three clusters of data to render their means identical
[Yang and Tabak, 2020].

A second premise of our relaxation is to adopt the quadratic transport cost.
With these two premises,

1. 7=Y(2q) =Y(2p) V 24,26 € {21, -, 28}
2. c(sc,y) = ||‘T - y||27

it can be shown that the factor discovery problem in Expression 7 becomes

k
H}gXZ[Ip] 17 — 7 (=) (9)



where I, is the set of the identities of all observations assigned to class p and
[I,] is its cardinality and where Z(z,) is the mean of all observations assigned to
class p. In other words, we seek to assign the observations so as to maximize a
weighted sum of the costs of transporting the conditional means. Via a relation
similar to that in Equation 6, this maximization problem is equivalent to the
minimization problem

k
min 3" 3 [’ - 7z, (10)
P op=liel,

Further, it can be shown that in the limit of numerous observations belonging
to each class, Expression 10 is equivalent to the global solution sought by the
well-known k-means algorithm [Tabak, 2023].

2.2 Standard k-means clustering

The standard k-means algorithm is as follows:

Algorithm 1 k-Means Clustering Algorithm

Require: Dataset {2'}, Number of clusters k
Ensure: Centroids {w,}F_,
Initialize {w,} at k random data points from {z’}
while Centroids change do
for each point z' in {2} do
2* « argmin||z’ — wp|| (i.e. assign 2 to the nearest centroid)

pe{l:k}
end for

for each centroid w,, in {w,} do
Update w, to be the centroid of all points currently assigned to class p
end for
end while

The k-means algorithm in particular arises from our relaxation because of
our second premise: adopting the quadratic cost. While best known by its
explicit formula, the arithmetic mean T of a set of real numbers {z? € R}

1L,
f:N;xl (11)

happens also to be the solution to the optimization problem

N
argminZ|xi — 2|3, (12)
A
which was implied earlier by our substitution in Equation 4. For a vector-valued
set, the mean is simply the vector of component-wise means.



2.3 An extension to k-medians

What if we had chosen not the quadratic cost c(x,y) = ||z — y||> but some
other cost? One alternative that immediately comes to mind is the linear cost
c(z,y) = ||z — y|| (i.-e. the euclidean distance). It seems natural then, given a
set of real numbers {z* € R}, to think of

N
argminz |zt — | (13)
=0

as some sort of “modified mean” of the set. In fact, this quantity already goes
by a familiar name:

N
argminz |z* — Z|
& =0

(14)

[

=2
= Median ({z' e R}Y).

It is the median, the middle value, of the set. In that spirit, we might consider
an algorithm k-medians that seeks k points, each of which minimizes the sum
of the distances to its attributed points. Naively, we might try to do this
component-wise on a set of vector-valued data. For the 2D dataset of 11 points
shown in Figure 2, the component-wise medians yield the red point. What we
intuitively want is the more natural “geometric median”, drawn approximately
in the right-side diagram.

X

Figure 2: Comparison of component-wise (left) and geometric (right) medians
of a 2D dataset containing 11 points.

The aforementioned naive approach of finding component-wise medians is
actually the block separable formulation of another problem, which is the min-



imization of the sum of manhattan distances (i.e. L' norms):
N
argminZHx’” — 2. (15)
¢ =1

The geometric median of a set of vectors is simply the minimizer of the sum of
euclidean distances (i.e. L? norms),

N
argminz llz* — &2, (16)
o=

which has no component-wise formulation. In fact, it has no explicit solution
outside a few special cases [Drezner et al., 2002].

2.4 An extension to general costs

Having seen k-medians, we might wish to extend the standard k-means algo-
rithm to further costs yet, arriving at an algorithm for what one might call
k-“general centers”:

Algorithm 2 k-“General Centers” Clustering Algorithm

Require: Dataset {2'}, Number of clusters k
Ensure: Centers {w,}
Initialize {w,} at k random data points from {z*}
while Centers change do
for each point 2% in {2’} do
2"+ argmin ¢(z",wp) (i.e. assign 2’ to the nearest center)
pe{l:k}
end for

for each center w, in {w,} do
Update w,, to be argmin Zielp c(zt, o)
&

end for
end while




3 k-GenCenters
3.1 The module (available on GitHub)

k-GenCenters (short for k-“General Centers”) is a new module that can perform
Algorithm 2 for a variety of transport costs ¢(x,y). As of this writing, these
include the L? norm for various values of p,

D P
c(z,y) = <Z|xdyd|p> , myeRP, peR, p>1, (17)
d=1

and some powers of the euclidean distance,

n

c(z,y) = , z,yeRP, neN. (18)

The k-GenCenters module is written in Python and styled after the well-
known sklearn.cluster.KMeans class from the scikit-learn library but pro-
vides some functionalities that do not exist in its sklearn counterpart. These
include a method that evaluates the accuracy of the clustering against the true
labels (if provided) and a method to generate the Voronoi diagram of the clus-
tering. Future users are encouraged to contribute custom costs and additional
functionalities. In theory, the transport cost used in k-GenCenters could be
quite exotic; it need not be translation invariant or even obey the metric space
axioms! Figure 3 shows a demonstration of the k-GenCenters module for a few
costs.

The k-GenCenters algorithm has a time complexity of O(ndki), where n
is the number of data points, d is the dimensionality of the data, k is how
many centers are sought, and ¢ is how many iterations are undertaken during
each update of the centers. The value of ¢ can be tuned by the user and does
not apply to standard k-means; ¢ applies to k-medians, which is implemented
using an iterative algorithm [Weiszfeld, 1937], and to most other costs offered by
k-GenCenters, which are implemented using gradient descent as of this writing.
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Figure 3: Demonstrating the k-GenCenters module on three toy datasets. Using
squared_euclidean and euclidean costs, the first two rows show k-means and
k-medians, respectively. A red x shows the final position of each center, col-
oration of the data shows the final assignments, Voronoi boundaries are drawn
in black, and runtime is printed in the southwest corner of each plot.
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3.2 A comparison of k-means and k-medians

Of the costs that k-GenCenters offers, squared_euclidean and euclidean run
fastest. They are also closely related, providing for an apt comparison of k-
means and k-medians. In the interest of brevity, some results have been omit-
ted from this and subsequent sections; the motivated reader might consult the
accompanying presentation slides, which contain additional pertinent graphics.

3.2.1 Robustness to outliers

Robustness to Outliers: k-Means and k-Medians

True Labels k-Means k-Medians

Feature 2

Accuracy: Accuracy:
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Feature 1
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Figure 4: Differential failure of k-means relative to k-medians on a toy dataset
with outliers, despite identical initialization. The first row shows a relatively
inaccurate clustering found by k-means due to the costly pull of outliers. The
second row of plots shows k-means catastrophically trapped in a local optimum.
The leftmost column simply shows the dataset colored by its ground-truth labels.

One would expect k-medians to be more robust to outliers than k-means since
the squared_euclidean cost explodes for faraway points. As result, k-means
tends to find an optimum that has lower absolute accuracy than k-medians on
outlier-ridden datasets. Figure 4 illustrates this weakness of k-means on an
admittedly antagonistic toy dataset.



3.2.2 Performance on real-world datasets

For a more practical test of the relative merit of k-means and k-medians, we
apply both algorithms to a gamut of real-world datasets. Table 1 shows the
datasets that were used, along with some of their properties.

Dataset Size | Dimensions | Classes
Iris 150 4 3
Seeds 210 7 3
E. coli 336 7 8
Glass 214 9 6
Wine 178 13 3
Breast Cancer | 569 30 2

Table 1: Specifications of the six real-world datasets used to compare k-means
and k-medians.

Table 2 shows the average accuracy over 100 trials of k-means and k-medians,
with a purple fill indicating the winning algorithm on each dataset. Based on
the number of wins, k-means and k-medians seem tied, each winning four out
of the eight datasets. There appears to be a trend that favors k-medians on
higher-dimensional datasets, but this trend is inconclusive. Moreover, given that
pairwise distances between points tend to become more uniform in keeping with
the so-called “curse of dimensionality” [Steinbach et al., 2004], one would even
expect the squared_euclidean cost to help produce meaningful differentiation
of the data. For these reasons, such a trend seems spurious.

Average Accuracy of k-Means and k-Medians (over 100 trials)

k-Means k-Medians
Iris 79.57% 78.73%
Seeds 91.71% 90.82%
E. Coli 74.47% 74.85%
Glass 44.84% 4229%
Wine 94.31% 95.82%
Breast Cancer 90.80% 91.62%

Table 2: Average accuracy over 100 trials of k-means and k-medians on six
real-world datasets. A purple fill indicates the higher value in each row (i.e. the
highlight shows which algorithm was more accurate).

Another important consideration in comparing k-means and k-medians, not

thoroughly explored in this investigation, is the stability of each algorithm. As
clustering is inherently an unsupervised learning task, the true labels are not
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usually available. One might be willing to make a significant sacrifice in average
accuracy to gain some stability, to avoid catastrophic outcomes, to achieve a
worst-case guarantee, etc.

3.2.3 A verdict

Historically, an advantage of k-means over k-medians has been its speed; there is
an explicit formula for the centroid, so the update step is fast. However, many
datasets are practically modest in their size, dimensionality, and class count,
including those heretofore used in this comparison. Even the time required to
run k-medians on one of these datasets is trivial—a fraction of a second on a
modern laptop computer. Therefore, the ostensible advantage of k-means over
k-medians on such datasets is greatly diminished. Especially if one anticipates
an outlier-ridden dataset, k-medians may be the better option.

3.3 Improving initialization

In the spirit of clustering with general costs, something else that we might
attempt is to improve the initialization of the centers.

3.3.1 The Forgy initialization

The Forgy initialization is the canonical initialization of the k-means algorithm.
Each center is initialized randomly, with uniform probability over the data
points [Pefia et al., 1999]:

1

P(w, = 2") = N Y p,i. (19)

3.3.2 The random partition initialization

The random partition initialization does not initialize the centers. Instead, it
initializes the assignments with uniform probability over the classes [Pena et al.,
1999, effectively partitioning the dataset and accomplishing the first step of the
main while loop in Algorithm 1:

1

P =p) =3 Vi (20)
The random partition initialization tends to produce centers that start close to-
gether, all near the heart of the dataset, and then migrate apart as the algorithm

proceeds.

3.3.3 The k-means+-+ initialization

The k-means++ algorithm is a relatively modern technique that proposes an
improvement over traditional initializations. Again, as in Forgy, we initialize
the centers. However, we do not do this with uniform probability over the data
points. Instead, we initialize the centers successively with a probability over the
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data points that grows with distance from the pre-existing centers [Arthur and
Vassilvitskii, 2007]:

min o — e
! 1< .
Plw, = 2') = = — ‘ 5 V1, p. (21)
o winler e}
P

Thus, we incentivize the centers to spread out. Such spread helps to mitigate
undesirable local optima and other issues.

3.3.4 The k-GenCenters+- initialization

In line with this flavor of argument, we might propose a bespoke initialization
called k-GenCenters++, in which the aforementioned probability of placing a
center at a data point grows not with the square of the euclidean distance but
with an arbitrary transport cost:

min c(x?, w;)
P(w, = 3') = —o=t Vi, p. (22)

N . .
2 j=1 minc(a?, wi)
p

For instance, one might consider replacing the squared euclidean distance
with the cubed euclidean distance, which would provide an even more extreme
incentive to place new centers far from pre-existing centers. Some preliminary
results appear to show that a k-GenCenters++ initialization with the cubed
euclidean distance c(z,y) = ||z — y||3 provides greater average accuracy on
certain real-world datasets. It is worth mentioning that the effect size amounts
to only a very small improvement over k-means++, and even then, this behavior
seems to hold true only on particular datasets. Further study would be needed
for a conclusive finding.

3.4 Ongoing work

The study of clustering with general costs may merit future work along several
avenues, including a more thorough treatment of “k-means vs k-medians” and
of improving initialization, which were earlier discussed. The following are areas
of recent or ongoing work but by no means represent an exhaustive list of the
directions in which we could take our inquiry.

3.4.1 Must-link constraints

One current area of interest as of this writing is clustering with must-link con-
straints. Suppose that we know that some of our observations share a factor
(e.g. they originated from the same person). This provides some useful infor-
mation, and the task of clustering becomes a semi-supervised learning task. We
say that these points sharing a factor are “must-link” [Huang et al., 2008], and
they must be assigned to the same cluster by the time our algorithm terminates.
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The perspective of optimal transport with general costs offers a delightfully
natural approach to this problem, namely, to assign all points in each must-link
set I, to the center that minimizes the sum of the transport costs during every
assignment step of Algorithm 2:

2" = argmin Z c(x',wp) ¥ m. (23)
P el
We can think of this as the “cheapest” center for the must-link set.

Under this technique, the centers can be expected to converge much faster,
providing a speedup to the algorithm. Currently, the implementation of the
k-GenCenters module available on GitHub is equipped with this must-link func-
tionality, and the motivated reader is encouraged to try it for herself.

3.4.2 Weighted surrogates

Given large must-link sets, we may have an opportunity to achieve another
speedup yet. We could reduce the number of operations required during every
assignment step by replacing the must-link set with a weighted surrogate and
then assigning all members of the must-link set based on some weighted cost of
transporting that surrogate. Make the assignments

2= argII)nin W(e(S({z"}ier, ) wp)) ¥V m (24)

where W () is some weighting function chosen carefully based on ¢() (this could
be as simple as a scaling factor like the cardinality of the must-link set [I,,])
and where S({z'};cs,,) is some surrogate point chosen carefully based on c¢()
that aggregates the points in the must-link set (this could be as simple as the
centroid). Employing such a weighted surrogate might allow us to avoid entirely
the business of summing the individual transport costs of all points belonging
to a large must-link set. This substitution may be especially practical in the
early iterations of the k-GenCenters algorithm, when the centers need only
migrate quickly and roughly in the right direction. Toward the later iterations,
we may wish for our algorithm to adaptively reintroduce information about the
individual points of each must-link set so that the final, converged assignments
are as accurate as possible.
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