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Abstract

We expand upon the Split Reactive Brownian Dynamics (SRBD) algorithm for reaction-diffusion
modelling, whereby particles diffuse, and also react when within a chosen reactive radius. We
extend this algorithm to allow for the numerical simulation of dimers. To do so, we employ sev-
eral temporal integrators to simulate Langevin stochastic differential equations, and assess their
convergence properties. We investigate the various competing time scales that are relevant to
the simulation of dimers, and develop a new integration scheme for evolving Brownian motion on
the unit sphere. We show that this integration scheme minimizes inaccuracies and numerical
instability in our model, especially when solving stiff equations.

1 Introduction and Background

It is well understood that complex biological processes are governed by monomers assembled
into larger units called polymers. The simplest example of this is a dimer. These dimers are
crucial in the organization of macroscopic structures, such as the cell cytoskeleton. Biologists
have frequently made experimental observations of the cross linking of actin polymers by dimers
aptly named cross linkers. However, there is little mathematical theory devoted to their diffusion.
These cross linkers evolve dynamically, binding and unbinding with actin filaments to provide
structure, support, and elasticity to the cell. When not bound, they freely diffuse as a dimer.
Consistent with the main goals of statistical mechanics, we set out to create a model of the cell
cytoskeleton without assuming any macroscopic laws, but by looking at the aggregate behaviour
of microscopic entities.

Our goal was to extend the stochastic hydrodynamic toolbox detailed in [1], in order to allow for
the simulation of dimers. Previously this toolbox was designed to handle monomers, which diffuse
independently. This toolbox uses Stochastic Reactive Brownian Dynamics (SRBD) for reaction-
diffusion modelling, whereby particles diffuse freely by a continuous random walk. When they
encounter another particle within a reactive distance ar, they react with a specified Poisson rate.
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For our purposes, ar represents the actin binding domain. SRBD runs particle simulations by
creating a box, known as a Doi box, partitioned into a grid. Each grid cell has a size larger than
the maximal reactive radius, so that each reaction must occur within a single cell. We also study
another method, Split Brownian Dynamics with Reaction Master Equation (S-BD-RME) where we
process diffusion similarly, however, rather than reacting when within ar, reactions are processed
only when particles are in the same reactive cell.

Our simulation is made difficult by its reaction-limited nature. Each individual cross linker will
diffuse until it encounters an actin polymer. The translational, rather than rotational, movement
of the cross linker is relevant in this step. However, this movement will likely take an exceedingly
long time. Thus, we want to develop an integrator with minimal error for translational diffusion
when ran with a large time step size, ∆t. When the dimer binds to actin, the relevant movement is
no longer translational, but rotational. Once one end of a dimer has bound, the dimer will rotate
in order to bind to another actin filament. Therefore, it is ideal if we can develop a way to evolve
the rotational movement of the cross linker analytically. In addition, we would like to create a
model that can be used for dimers with varying bond strengths (stiffness), as this will increase
the biological plausibility of our model.

We start by describing the model we use to simulate dimers. Then we compare and evalu-
ate various methods by which these differential equations could be integrated. We then quan-
tify the rotational movement of the dimer by computing the rotational diffusion coefficient, and
develop a method using an Euler-Lie integrator to evolve Brownian motion on the unit sphere
semi-analytically. Finally, we detail certain instances when the theory of rotational diffusion may
break down.

2 Mathematical Model

We begin by constructing a mathematical model for the displacement of a molecule r while in a
thermodynamic driving potential, U . This can be done by looking at the overdamped Langevin
equation,

m
d2r

dt2
= −∂U

∂r
− µ−1 dr

dt
+
√

2kbTµ−1
dW

dt
, (1)

where m, kb, T , µ, dW , are the mass, Boltzmann’s constant, temperature, mobility coefficient,
and the differential of the Wiener process in Rd respectively. In the low-intertia limit, m −→ 0, we
are left with

dr = −µ∂U
∂r

dt+
√

2kbTµ dW . (2)

Note that by definition, ∂U/∂r = −F . Each cross linker is composed of two molecules, r1, r2 ∈ Rd,
of radii a1, and a2, respectively, and are modelled to be connected by a spring of stiffness k. Thus,
the Langevin equation we model is

dri = µiF idt+
√

2Di dW i(t), (3)
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where µi, Di = kbTµi, F i are the mobility coefficient, diffusion coefficient, and spring force, for
molecule i, respectively. By the Stokes-Einstein law, we know that for perfectly spherical objects in
a fluid with low Reynolds number, D = kbTµ = kbT/(6πηa), where, η is the dynamic viscosity, and a
is the hydrodynamic radius of the molecule. The solution of (3) will follow an Ornstein-Uhlenbeck
process, if F i is linear in ri.

2.1 Center of Mass and Relative Distance

We can judiciously change coordinate systems from (r1, r2) to (rcm, rd), where rcm is the position
of the center of mobility, and rd is the position of r1−r2. This is important because, as we will see,
rcm will be entirely characterized by Brownian motion, and therefore the translational movement
of the dimer can be analytically solved. Suppose that we wish to track the movement of the center
of mobility, drcm, given by drcm = αdr1 + (1− α)dr2 for α ∈ (0, 1). Then,

drcm = αdr1 + (1− α)dr2,

= α
(
µ1F 1dt+

√
2kbTµ1 dW 1(t)

)
+ (1− α)

(
µ2F 2dt+

√
2kbTµ2 dW 2(t)

)
,

= F 1 (αµ1 − (1− α)µ2) dt + α
(√

2kbTµ1 dW 1(t)
)

+ (1− α)
(√

2kbTµ2 dW 2(t)
)
,

where we have used the fact that F 1 = −F 2. Note that the center of mobility will occur when
α = µ2/(µ1 + µ2), and the deterministic terms will cancel, leaving us with

drcm =
µ2

µ1 + µ2

(√
2kbTµ1 dW 1(t)

)
+

µ1

µ1 + µ2

(√
2kbTµ2 dW 2(t)

)
,

=

(√
2kbTµ2

2µ1

(µ1 + µ2)2
dW 1(t)

)
+

(√
2kbTµ2

1µ2

(µ1 + µ2)2
dW 2(t)

)
,

=

√
2kbTµ1µ2

(µ1 + µ2)
dW 3(t),

since dW 1(t) and dW 2(t) are independent Wiener processes and their variances will add. Thus,
in general, the diffusion coefficient of the center of mobility is given by Dcm = kbTµ1µ2/(µ1 + µ2).
We can write this a simpler way by reintroducing an effective mobility coefficient, µcm, such that

drcm =
√

2kbTµcm dW 3(t), (4)

where µ−1cm = µ−11 + µ−12 . However, the simplest case to consider is when both molecules have the
same radius. Then µ = µ1 = µ2, implying α = 0.5, and D1 = D2 = D. In addition, we can see that
in this case,

drcm =

√
2kbTµ2

2µ
dW 3(t),

=

√
2

(
D

2

)
dW 3(t).

This results in an effective diffusion coefficient, Dcm = D/2. Since the deterministic terms cancel,
this is a purely stochastic differential equation. In other words, this is a continuous random walk
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(Brownian motion). We can verify this by simulating the mean squared displacement of the center
of mobility for all time. By definition, it should follow the relation

〈
r2cm(t)

〉
=
〈
‖rcm(t+ t0)− rcm(t0)‖2

〉
= 2dDcmt, (5)

where d is the dimension of rcm, and we are averaging across all t0. In Fig. (1), a division of 2d

Figure 1: Mean squared displacement of the centre of mobility averaged across t0, given by (5).
Error bars are shown in black and represent 95% confidence intervals. An approximate linear
function < r2cm >= 2dDcmt is plotted in orange. The simulated cross-linker has parameters k = 10,
a = 0.007, kbT = 0.004, η = 0.1, l0 = 0.5, giving D = 0.3.

yields the expected diffusive coefficient Dcm = 0.15. This confirms that within statistical error,
rcm is entirely characterized by Brownian motion and we can therefore simulate the differential
equation with low-order methods such as Euler-Maruyama. Statistical error was quantified by
using the central limit theorem across multiple runs with different seeds to construct confidence
intervals.

We must also transform our equations into an equation for rd, where rd = r1 − r2. Proceeding
analytically, we can solve for drd,

drd = dr1 − dr2,

= (µ1F 1 − µ2F 2)dt+
√

2kbTµ1dW 1 −
√

2kbTµ2dW 2,

= F 1(µ1 + µ2)dt+
√

2kbT (µ1 + µ2)dW 3,

=
k(l0 − l)

l
(µ1 + µ2)rddt+

√
2kbT (µ1 + µ2)dW 3,

where l is the distance between r1 and r2, and l0 is the rest length. We can see that there is an
effective diffusion coefficient in this case as well, where Dd = kbTµd, and µd = µ1 + µ2. Using this
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notation, we can simplify to

drd = µd
k(l0 − l)

l
rd dt+

√
2Dd dW 3. (6)

The white noise in rd obeys detailed balance, or microscopic time reversibility, and therefore the
quantity rd is ergodic with respect to the Gibbs-Boltzmann distribution, which is the solution of
the Fokker-Planck or Kolmogorov forward DE at a steady state [3],

d

dl

(
µd
k(l0 − l)

l
rd P (l)

)
− kbTµd

d2

dl2
P (l) = 0,

in one dimension. Analytically, it can be seen that the solution to this DE is the Gibbs-Boltzmann
distribution

dP (l) =
1

Z
exp

(
−k(l − l0)2

2kbT

)
dl, (7)

where Z is the normalizing factor. This can be extended to three dimensions, where rd ∈ R3.
In spherical coordinates, with l, θ, φ corresponding to the radial distance, azimuthal angle, and
polar angle respectively, we get

dP (l, θ, φ) =
1

Z
exp

(
−k(l − l0)2

2kbT

)
dV, (8)

where, through the Jacobian, dV = l2 sinφdφdθdl. If we instead simulate the distribution of radial
distances, a change in the probability measure gives us

dP (l) =
1

Z
l2 exp

(
−k(l − l0)2

2kbT

)
dl. (9)

Simulating the 1D scenario, as well as the 3D scenario measuring the radial distance, we get
Fig.2 and Fig.3. We can see that both probability density functions are in agreement with the
expected Gibbs-Boltzmann distribution.

2.2 Vibration and Rotation Model

In doing the above analysis, we have changed coordinate systems. We can change coordinate
systems further, so that rd is transformed into (u, l), where l = ‖rd‖ represents the vibrational
movement of the cross linker, and u = rd/ ‖rd‖ represents the dimers rotational movement. This
can be done using the multidimensional Ito’s Lemma [5]. This results in

dl =

(
−(l − l0)kµd +

2kbTµd

l

)
dt+

√
2kbTµd dW1, (10)

du =
−2kbTµd

l2
u dt+

√
2kbTµd

l
u× dW 2, (11)

where dW 2 is a vector composed of d independent Wiener processes. Importantly, du rotates the
cross linker on the unit sphere, i.e, d ‖u‖ = 0, and so ‖u‖ = 1 at all times.
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(a)

(b)

Figure 2: (a) Histogram of displacement between molecules r1 and r2 with rest length l0 = 0, and
parameters k = 1, D = 1, µ = 1 in 1D, overlayed with the Gibbs-Boltzmann Distribution (7). (b)
Comparison of numerical model with the Gibbs distribution. The vertical axis shows ∆Φ, the
difference between the numerical model and the theoretical (Gibbs) distribution. Open circles
represent the mean over 16 iterations. The 95% confidence intervals are shown by the error bars.

The biological plausibility of our model could be hindered by the approximation of cross linkers
as dumbbells. A cross linker in our model is composed of two monomers connected by a spring,
and the cross linker is free to diffuse in any direction. In reality, cross linkers are elongated
molecules closer to cylinders, where movement parallel to the cross linkers’ axis is more common
than movement perpendicular to the cross linkers’ axis. To model this, we introduce different
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(a)

(b)

Figure 3: (a) Histogram of distance between molecules r1 and r2 with rest length l0 = 10−4, and
parameters k = 1, D = 1, µ = 1 in 3D, overlayed with the Gibbs-Boltzmann Distribution (9). (b)
Comparison of numerical model with the theoretical distribution. The vertical axis shows ∆Φ, the
difference between the numerical model and the theoretical Distribution. Open circles represent
the mean over 16 iterations. The 95% confidence intervals are shown by the error bars.

mobilities for the vibrational diffusion (µ‖) and the rotational diffusion (µ⊥),

dl =

(
−2(l − l0)kµ‖ +

4kbTµ
‖

l

)
dt+ 2

√
kbTµ‖ dW1, (12)

du =
−4kbTµ

⊥

l2
u dt+

2
√
kbTµ⊥

l
u× dW 2. (13)

It is important to note that these work out to be the same equations as (10) and (11) when µ1 = µ2,
except here, µ⊥ takes the place of µ in (11), and µ‖ takes the place of µ in (10). This makes intuitive
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sense, as movement in the parallel direction should not change du, and perpendicular movement
should not change dl. When one end of the cross linker is bound, we reduce µ‖ and µ⊥ by a factor
of two, to be consistent with the isotropic case, when µ‖ = µ⊥. In the isotropic case, when one
end of a cross linker binds actin, the mobility of that end would be set to 0.

3 Numerical Simulation of Stochastic Differential Equations

Now that we have created a model, we must find the best way to integrate our equations. To
assess the convergence properties of our model, we will measure the convergence to the steady-
state distribution from the evolution of rd that is expected from the Fokker-Planck equation.

By converting to (rd, rcm), we only need worry about the convergence properties of rd, as we
have previously shown that rcm has no deterministic term, and therefore is exact with the Euler-
Maruyama scheme. However, we may wish to also simulate rd with Euler-Maruyama. Thus, given
a stochastic differential equation of the form

dX(t) = f(X(t))dt+ g(X(t))dW (t),

we can approximate the solution curve by discretizing the interval [0, T ] into n = T/N intervals.
Then Xn = X(tn), where tn samples the left endpoint, consistent with Ito calculus. If an initial
value is given, the Euler-Maruyama method approximates the solution by repeated iterations of

Xn+1 = Xn + f(Xn)∆t+ g(Xn)∆W n,

where ∆W n is a normally distributed random variable with mean 0 and variance ∆t. Here we are
only concerned with weak convergence. Thus, we will measure how the error of the expectation
values decay as ∆t −→ 0+. This means we need to define an error statistic. One choice (but not
the only choice) would be to quantify the error statistic as

E =

∣∣∣∣√V̂ar(H)− σ
∣∣∣∣ , (14)

where, in 1D, σ is the standard deviation of the Gibbs distribution, or
√
kbT/k, and V̂ar(H) is the

variance of the estimated histogram, H. If we set kbT = 1, k = 1, then our new error statistic is
simply the standard deviation of the numerically simulated histogram, minus 1. There is a weak
order of convergence, γ if

E ≤ C∆tγ ,

for a constant C [4]. We could measure this error by plotting our error function against a dimen-
sionless time step size, ∆τs = ∆t/τs = ∆tµdk, where the time step size is a fraction of the relaxation
time of the spring, τs = (µdk)−1, a fundamental time scale in our problem. Looking at Fig. 4, we
see that the error of the second moment is approximately of order 1. It can also be seen that the
statistical errors come to predominate over errors from the time step size.

We can contrast these results with those from using different numerical schemes. One scheme
to look at is called the explicit midpoint scheme [2]. It is a predictor-corrector method. If we plan
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(a)

(b)

Figure 4: Error in spring length variance as defined by (14) as a function of the dimensionless
time step, ∆τs = ∆tµdk, where τs = µdk, for (a) the Euler-Maruyama method in 1D, and (b) the
explicit midpoint method in 1D. The power law reference functions are (a) E ∼ ∆τs, (b) E ∼ ∆τ3s
shown in red. Confidence Intervals are shown to 95% accuracy. Simulations were done with
k = 1, l0 = 0, kbT = 1, µ1 = µ2 = 1, and ran over 100000 time steps for each of 16 trials. The
relaxation time scale is τs = 1/(µdk) = 0.5.

to simulate rd, then given the function L(rd) = (µ1 + µ2)k(l0 − l)/l, where the dependence on rd
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Figure 5: Error in spring length variance as defined by (14) as a function of the dimensionless
time step, ∆τs = ∆tµdk, where τs = µdk, for the implicit trapezoidal scheme in 1D. ∆t ranges from
τs/2

7 to 2τs. The results are shown for two different rest lengths. Confidence Intervals are shown
to 95% accuracy. Simulations were done with k = 1, kbT = 1, µ1 = µ2 = 1, and ran over 400000
time steps for each of 16 trials. The relaxation time scale, τs = 0.5.

comes from l = ‖rd‖, we can define the following sequence

r
p,n+ 1

2

d = rnd +
∆t

2
L(rnd)rnd +

√
Dd∆t W 1,

rn+1
d = rnd + ∆tL(r

n+ 1
2

d )r
n+ 1

2

d +
√
Dd∆t (W 1 + W 2),

where Dd = kbT (µ1 + µ2), W i is a standard normally distributed vector, and the superscripts
indicate either the point at which the quantity is evaluated, or whether it is a predictor step. We
can see from Fig. 4b, that this demonstrates O(∆t3) convergence, but only until a certain point.
Statistical errors come to predominate much faster than in the Euler-Maruyama scheme and the
error drops much quicker as well. We can also use an implicit trapezoidal method [2] where we
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follow the predictor-corrector scheme

rp,n+1
d = rnd +

∆t

2
L(rnd)(rnd + rp,n+1

d ) +
√

2Dd∆t W 1,

rn+1
d = rnd +

∆t

2

(
L(rnd)rd + L(rp,n+1

d )rn+1
d

)
+
√

2Dd∆t W 1.

Fig. 5. indicates that this may not necessarily follow a noticeable error relation as the other
methods did. This method is in fact exact for the equilibrium distribution when l0 = 0, as this
results in L(rd) = L ∈ R, i.e. there is no longer dependence on rd. When l0 6= 0, the statistical
errors continue to predominate, but this method is no longer exact.

4 Stability Analysis

In numerical analysis, the other property we are concerned with is numerical stability. It is a
theorem in stochastic calculus that the numerical stability of a stochastic differential equation is
the same as the numerical stability of the corresponding deterministic differential equation. This
can be seen by the following example. For a numerical method given by Xn+1 = Xn = MXn+KN ,
where K ∈ Rd×d′ , M ∈ R, and N ∈ Rd′ is a standard normally distributed vector. At a steady state
we have

V ar(Xn+1) =
〈
X2
n+1

〉
− 〈Xn+1〉2 ,

V ar(Xn+1) = V ar(Xn),

⇒ V ar(Xn) = 〈(MXn + KN) · (MXn + KN)〉 − 〈MXn + KN〉2 ,

=
〈
(M2Xn ·Xn +MXn ·KN + (KN) · (KN)

〉
−M2 〈Xn〉2 ,

= M2V ar(Xn) + K
〈
NTN

〉
KT ,

=
KKT

1−M2
,

which remains bounded for |M | < 1. This is the same stability criterion as for the corresponding
deterministic equation. However, while M will tell us about stability, the accuracy criterion can
be seen by also looking at the numerator, KKT . So for the explicit midpoint method, with l0 = 0,
and in 1D, we are concerned with

Xn+1 = Xn + ∆t

(
−µdkXn +

∆t

2
µ2

dk
2Xn − µdk

√
Dd∆tW n

1

)
+
√
Dd∆t(W n

1 + W n
2 ),

=

(
1−∆tµdk +

∆t2k2µ2
d

2

)
Xn + (1−∆tµdk)

√
Dd∆tW n

1 +
√
Dd∆tW n

2 ,

=

(
1−∆τs +

∆τ2s
2

)
Xn +

√
Dd∆t((1−∆τs)2 + 1)W n

12,

so M = (1 − ∆τs + ∆τ2s /2), and |M | < 1 ⇐⇒ 0 < ∆τs < 2, which gives our stability region.
This is consistent with Fig. 4, which shows instability at ∆t = 2τs. It is also seen that K =
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√
Dd∆t((1−∆τs)2 + 1). Thus, KKT = Dd∆t(1− µdk∆t)2 +Dd∆t, and we have

V ar(Xn+1) =
Dd∆t(1− µdk∆t)2 +Dd∆t

(1− (1−∆τs + ∆τ2s /2)2)
,

⇒ V ar(Xn+1) = V ar(Xn)

(
1 +

1

8
∆τ3s +O(∆τ4s )

)
,

where V ar(Xn) = Ddτs = kbTµd/(kµd) = kbT/k. This means that V ar(Xn+1) is correct to leading
order O(∆t3). Therefore, a decrease in the time step size will decrease the variance by O(∆t3),
which is consistent with our results from Fig. 4b.

5 Quantifying the evolution of the dimer

In our model there are three time scales. There is the spring/relaxation time scale, which we
have used above, τs, the rotational time scale, τr and the diffusive time scale, τd. The spring time
scale is simply 1/(µdk), as the Ornstein-Uhlenbeck process for the spring length l has fluctuations
about the rest length damped by

〈(l(t+ t0)− l0) (l(t0)− l0)〉 =
kbT

k
exp

(
−|t|
τs

)
,

where τs = 1/(µdk).
However, we must also be able to keep track of rotational movement. In particular, once a

cross linker has bound at one end to an actin polymer, the binding of the free end to another actin
polymer will be driven by rotational diffusion. This quantity maintains the equilibrium statistical
distribution of the overall orientation of the dimers, whereas translational diffusion maintains
the equilibrium statistical distribution of the dimers’ position in space. We can measure the
rotational correlation time, τr, by looking at the decay of the auto-correlation function, given by

ACF (t) = 〈u(t+ t0) · u(t0)〉 . (15)

This function should decay at a rate inversely proportional to the rotational diffusion coefficient.
For a rigid dimer made of equal particles it can be shown that

〈u(t+ t0) · u(t0)〉 = exp (−2Drt) = exp

(
−2kbTt

3πηal20

)
, (16)

with the rotational diffusion coefficient, Dr = kbTµr, where µr = 2µ/l20 = µd/l
2
0. Therefore, ACF (t) =

exp(−2t/τr), where τr = D−1r . We plot this relation in Fig. 6, and see that it is valid within statistical
error. Note that with anisotropic mobilities, we get µr = 2µ⊥/l20.

The third and final time scale is used in the SRBD algorithm itself, and it relates the reactive
radius to the translational diffusion. Since each cross-linker cannot in a single time step diffuse
farther than the distance of the actin-binding domain, we require ∆t � τd = a2r/(kbTµcm), where
ar is the reactive radius of the actin-binding domain.

We have previously expressed our time step size, ∆t, as a fraction of the spring time scale, but
we can also extend this to the other two time scales in our problem, such that ∆τr = ∆t/τr and
∆τd = ∆t/τd.
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Figure 6: Auto-correlation function < u(t + t0) · u(t0) >, as a function of the lag time. The theo-
retical curve, exp(−2kbTt/3πηal

2
0), is shown in red. Error bars are 95% confidence intervals. The

simulation was ran with k = 100, l0 = 0.5, a = a1 = a2 = 0.01, η = 1.0, and temperature chosen
such that kbT = 4× 10−3.

In general, ∆t must be smaller than the smallest time scale in order for convergence. Typically,
and especially with a rigid dimer, the smallest time scale will be τs. However, in certain cases, the
spring time scale may become negligibly small. This may occur when the spring is sufficiently
stiff. Thus to satisfy ∆τs � 1, our time step size must also become unreasonably small. Therefore,
as k becomes large, we are left with a stiff equation. This is not practical, so we simulate our model
with ∆τs > 1 in a stiff limit, as explained below. We can derive the stiffness criterion by measuring
the ratio

τs
τr

=
1/(kµd)

l20/(2kbTµd)
,

=
2kbT/k

l20
,

⇒ τs =

(√
2δl

l0

)2

τr,

where δl is the fluctuation length of the spring. Therefore, as δl2 � l20, we enter the “stiff-spring”
limit, where the spring time scale becomes negligible, and we are primarily focused on the ro-
tational time scale (and also the diffusion time scale), as τs � 1. In this limit the time scales τs
and τr separate. It is clear that for these stiff systems, the explicit midpoint and Euler-Maruyama
integrators will fail, as ∆τs ∝ τ−1s , which grows in proportion to k, and we have already shown
a stability limit (∆τs < 2) for the explicit midpoint method. One can show that the same rela-
tion holds for Euler-Maruyama, both numerically and analytically. However, it is less clear for
the implicit trapezoidal method. Here, there is no stability limit, as is the case for most implicit
solvers, but there may still be inaccuracies that arise when k becomes large enough. Fig. 7(c)
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demonstrates that for a sufficiently stiff spring, and a large enough time step size, the implicit
trapezoidal method fails to converge to the Gibbs distribution or to the correct rotational diffusion
coefficient. Thus, the Euler-Maruyama, explicit midpoint, and implicit trapezoidal methods all
fail to converge for large k and for a sufficiently large ∆t. This is an issue, as dimers are often
biologically modelled as stiff springs.

5.1 Rotation and Vibration Integrator

One way in which we could work around this issue is to separate the vibrational movement of rd

from the rotational movement of rd. This has been accomplished by (10) and (11). In particular,
rotation will be separate from vibration in the stiff limit. In addition, if a spring is stiff, l should be
approximately constant. Thus, the relevant evolution of the dimer is rotational, not translational.
By design, (11) measures only the rotation of the dimer, and the only relevant time scale is τr

as τs is no longer a time scale involved in this equation. So we should not run into issues when
τs separates from τr. We seek to find a way to simulate du analytically, as if we can do so, we
can efficiently capture the evolution of the dimer once it has bound actin. We use an Euler-Lie
integrator which evolves Brownian motion on a spherical manifold and applies the action of SO(3).

We do this by rotating u by an angle θ =
√

2Dd∆t ‖N‖ /l, where N is a normally distributed
vector, and around an axis of rotation given by k = N/ ‖N‖. The algorithm for rotating the vector
u around this axis by an angle, θ, is given by the Rodrigues formula

un+1 = un cos θ + (k × un) sin θ + k(k · un)(1− cos θ).

In Fig. 8(c), we can see that this method results in improved convergence to the steady state
Gibbs distribution, as well as yields the correct rotational diffusion coefficient in the stiff limit.

However, when we are not in a stiff limit, the vibrational evolution of the dimer governed
by (10) becomes increasingly relevant. We integrate this differential equation using the implicit
trapezoidal method, except now we have an explicit term, g(l) = 2Dd/l + l0µdk, such that our
predictor-corrector method becomes

lp,n+1 = ln +
∆t

2
L(ln)(ln + lp,n+1) + g(ln)∆t+

√
2Dd∆t W 1, (17)

ln+1 = ln +
∆t

2

(
L(ln)l + L(lp,n+1)ln+1

)
+ g

(
1

2
(ln + lp,n+1)

)
∆t+

√
2Dd∆t W 1, (18)

where L(l) = −µdk. However, the explicit term g( 1
2 (ln + lp,n+1)) can be evaluated differently. An

alternative handling of the explicit term will lead to the corrector step

ln+1 = ln +
∆t

2

(
L(ln)l + L(lp,n+1)ln+1

)
+

1

2
(g(ln) + g(lp,n+1))∆t+

√
2Dd∆t W 1. (19)

While this alternative handling of the explicit term will converge to the Gibbs-Boltzmann distri-
bution for small ∆t, this is not generally true as ∆t grows. Indeed the former approach is more
accurate, as it is minimizes error for small l, as shown in Fig. 9(b).
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(a)

(b)

(c)

Figure 7: Auto-correlation function < u(t+ t0) ·u(t0) >, as a function of the lag time, t, plotted be-
sides the histogram for the evolution of rd with various spring constants. (a) k = 0.1, ∆τs = 0.0125,
δl/l0 = 2, (b) k = 5, ∆τs = 0.625, δl/l0 = 0.282 (c) k = 16, ∆τs = 2, δl/l0 = 0.158. Theoretical curve
is given by (16) for (a), (b), (c), and shown in red. Simulations ran with the implicit trapezoidal
method and ∆τr = 0.1, a1 = a2 = 0.01, η = 1.0, l0 = 0.5, kbT = 0.1. The time scale τr was computed
in the stiff limit, and ∆τs = 0.1τr/τs.
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(a)

(b)

(c)

Figure 8: Auto-correlation function < u(t + t0) · u(t0) >, as a function of the lag time, t,plotted
besides the histogram for the evolution of rd with various spring constants. (a) k = 0.1, ∆τs =
0.0125, δl/l0 = 2, (b) k = 5, ∆τs = 0.625, δl/l0 = 0.283 (c) k = 16, ∆τs = 2, δl/l0 = 0.158. Theoretical
curve is given by (16) for (a), (b), and (c), and is shown in red. Simulations ran with the separation
of vibration and rotational time scales method and ∆τr = 0.1, a1 = a2 = 0.01, η = 1.0, l0 = 0.5,
kbT = 0.1. The time scale τr was computed in the stiff limit, and ∆τs = 0.1τr/τs.
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(a)

(b)

Figure 9: (a) Convergence to the Gibbs-Boltzmann distribution, shown in red. (b) Comparison
of numerical model and the theoretical distribution. The vertical axis shows ∆Φ, the difference
between the numerical model and the theoretical distribution. Parameters were k = 5, kbT = 0.1,
a1 = 0.01, a2 = 0.01, η = 1.0, l0 = 0.5, δl/l0 ≈ 0.28, ∆τr = 0.25, ∆τs = 3.375. Simulations were ran
with the separation of vibration and rotation time scales method using the corrector scheme (19)
in black, and the corrector scheme (18) shown in blue. Error bars represent 95 % confidence
intervals.

5.2 Rotation and Vibration in an Anisotropic setting

Using (12) and (13), we can extend our model to include anisotropic mobilities. In our code, we
are using the convention µ1 = 2µcm = 2µ⊥/3 + µ‖/3, and µ2 = µ⊥. Thus, µ‖ = 3µ1 − 2µ2. Note that
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if µ‖ 6= µ⊥ then this is a separate convention from the isotropic case, where µ1 and µ2 referred to
the mobilities of r1 and r2, respectively. If µ‖ = µ⊥, then these conventions are consistent with
each other. However, using the anisotropic convention, we get the results shown in Fig. 10, which
demonstrates that we are able to successfully generalize to a setting with anistropic mobility.

(a)

(b) (c)

Figure 10: Comparison of data (black) to theoretical results (red) for (a) the Gibbs-Boltzmann
distribution (9), (b) the diffusion of the center of mobility (5), and (c) the auto-correlation function,
as a function of the lag time, (t), (16). Parameters were µ⊥ ≈ 5.31, µ‖ ≈ 1.40, k = 100, kbT =
4.0× 10−3, a1 = 0.0133, a2 = 0.01, η = 1.0, δl/l0 ≈ 0.006. Simulations were ran with the separation of
vibration and rotation time scales method. Error bars represent 95 % confidence intervals.

5.3 Rotational Diffusion in the non-stiff limit

The relation given by (16) is only valid in a stiff limit. In the non-stiff limit, we expect there to be
a correction ratio r, such that for a dimer of equal radii

〈u(t+ t0) · u(t0)〉 = exp

(
−2kbTtr

3πηal20

)
. (20)
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This ratio is given by

r =

〈
l20
l2

〉
= l20

∫∞
0

exp
(
−(l − l0)2/(2δl2)

)
dl∫∞

0
l2 exp (−(l − l0)2/(2δl2)) dl

,

⇒ r =

√
2π(erf(

√
2/(2x)) + 1)√

2π(x2 + 1) erf (
√

2/(2x)) + 2 exp(−1/(2x2))x+
√

2π(x2 + 1))
, (21)

where x = δl/l0. However, when we plot this relation in Fig. 11, we can see that the slope does
not perfectly match the data. In fact, for δl � l0, the decay is not exponential. We postulate that

(a) (b)

(c)

Figure 11: Auto-correlation function < u(t + t0) · u(t0) >, as a function of the lag time, (t). (a)
k = 0.4, δl/l0 = 1, (b) k = 5, δl/l0 = 0.282 (c) k = 16, δl/l0 = 0.158. Theoretical curve for a stiff
spring (18) is shown in blue, while the theoretical curve for a non-stiff spring (21) is shown in red.
Simulations ran with the separation of vibration and rotational time scales method and ∆τr = 0.1,
a1 = a2 = 0.01, η = 1.0, l0 = 0.5, kbT = 0.1. Error bars represent 95 % confidence intervals.

there may in fact be two exponentials, one for short time, and one for long time, and some sum
of these exponentials is the true theoretical curve. In the stiff limit, this sum may converge to a
single exponential, that as seen in (16). This is still an area of active research.
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6 Conclusions

We have expanded upon the Stochastic Reactive Brownian Dynamics (SRBD) algorithm to include
the simulation of dimers. In doing so, we developed a new set of integrators which minimize
numerical instabilities and allow us to analytically solve key steps in the relevant evolution of
the dimer. Our model is reaction-limited, so we diffuse the center of mass analytically to capture
translational diffusion, minimizing the cost of this step in our algorithm. In addition, our Euler-Lie
integrator evolves Brownian motion on the unit sphere and analytically solves for the rotational
movement of the dimer, which has increasing importance once a dimer had bound actin. By
developing a model which has reduced numerical inaccuracies, we can efficiently simulate actin
cross linking. This is important as it is aligned with a fundamental goal of statistical mechanics:
to build models of microscopic phenomena to explain mesoscopic behavior. Our long term goal
is to use this model to explain this mesoscopic behavior that has been experimentally measured
in the cell.

Next steps include adding reverse reactions to visualize and measure unbinding of the cross
linkers, and measuring the rate at which cross linkers bind actin in different geometries. In
addition, we wish to make quantitative computations with our dimers represented as cylinders
rather than dumbbells. In particular, an open question is whether the macroscopic rate of binding
will decrease significantly when anisotropic mobilities are included.
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