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Wulfram Gerstner, Werner Kistler, Richard Naud, and Liam Paninski.
1.5 neuronal dynamics online book, Cambridge University Press, 2014.
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Brain is a complex system
Mathematical models for neural
system are high-dim and nonlinear
We want to know the properties of

these models with machine learning

With an initial condition of a brain
neural system, we want to predict
its spiking patterns using machine

learning.
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Neural System

e Neurons: (Excitatory/Inhibitory)
elementary processing unit
e Action potentials (spikes):

a short voltage pulse of 1-2 ms
duration
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S. Ramon y Cajal (1909) H/stolog/e du systeme nerveux de
I'homme et des vertébré. A. Maloine, Paris.
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Integrate - and_ A neuron receives spikes from:

e Other neurons that project to it

Fil‘ing MOdel e External current input

Only care about the time of events O Excitatory neuron

/\ Inhibitory neuron
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Spiking Pattern
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Methodology

Training process:

Inputs: e Cutthe inputinto overlapping
e Spiking counts of all neurons in the time intervals of length 10 ms
neural system over 3000 ms e Use the input at time intervals

e [External inputs injecting to all neurons

t = n-steps, ..., Nn-1to predict the
respectively over 3000 ms o
spiking countatt=n

Output: e Minimize the loss function for
e Prediction of testing data’s spiking training data:
counts

L = x
MSE = — X, — X,
m;II l
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Result:
LSTM
model

LSTM: deal with
gradient vanishing

Plots: all are spiking
counts of one single
neuron randomly
chosen from its neural
system (one line of the
output)
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Summary

e Develop an LSTM model to predict the spiking

time series of lower dimensional neural systems.

Future work: Improve the performance for the prediction

> Neural systems with more connected neurons

> High dimensional neural system with more than 60

neurons
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