Wasserstein Barycenter Applied to K-Means Clustering

Carol Long Email Address: <u>carol.long@nyu.edu</u>

Advisor: Yunan Yang

1.K-Means Clustering

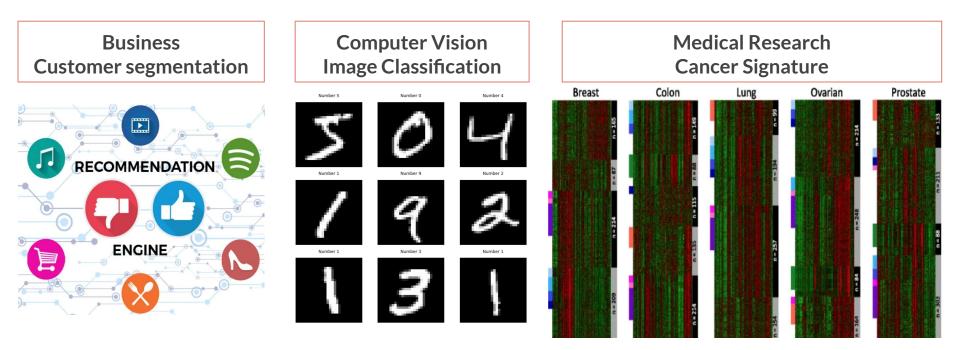
2.Optimal Transport and Wasserstein Distance/Barycenter

3. Modified K-Means Algorithm with Wasserstein Distance

4.Implementation - Shape Experiment

5.Conclusion and Future Work

K-Means Clustering - Applications

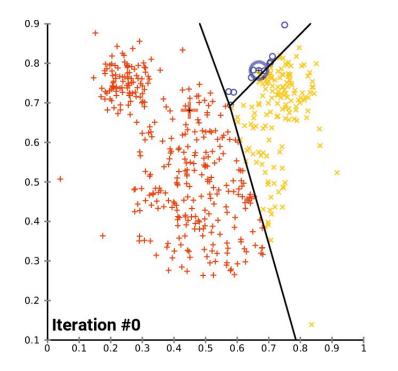


Img source: Chifman, J., Pullikuth, A., Chou, J.W. *et al.* Conservation of immune gene signatures in solid tumors and prognostic implications. *BMC Cancer* 16, 911 (2016).

K-Means Clustering - Algorithm

<u>Algorithm</u>

- 1. Initialization: randomly pick k centroids from the samples as initial cluster centers;
- 2. Expectation Step: Assign each sample to its nearest centroid $\mu^j, j \in \{1, ..., k\}$;
- 3. Maximiazation Step: Move the centroid to the center of samples that were assigned to it;
- 4. Repeat steps 2 and 3 until the cluster assignments do not change/ convergence/ max itr reached.



K-Means Clustering - Algorithm

K-Means Algorithm

- 1. Initialization: randomly pick k centroids from the **samples** as initial cluster centers;
- 2. Expectation Step: Assign each sample to its **nearest** centroid $\mu^j, j \in \{1, ..., k\}$;
- 3. Maximiazation Step: Move the centroid to the **center of samples** that were assigned to it;
- 4. Repeat steps 2 and 3 until the cluster assignments do not change/ convergence/ max itr reached.

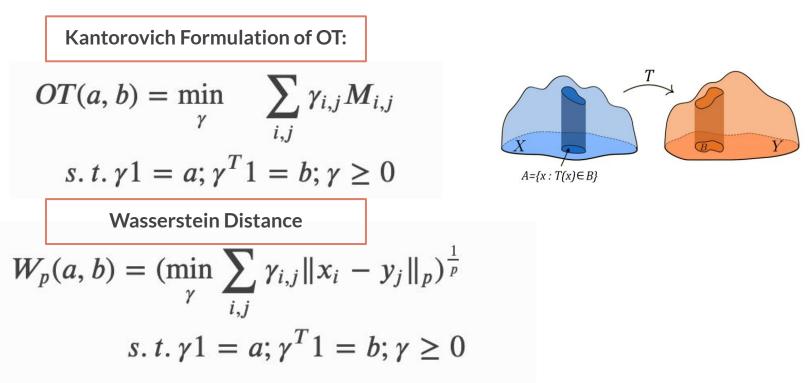
Motivating Questions/Observation

> Samples - In the form of distributions

Does Euclidean norm / Frobenius norm capture distance well?

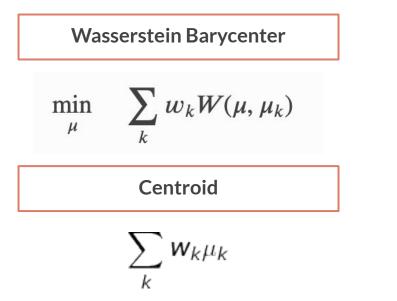
Does centroids produce good prototypes?

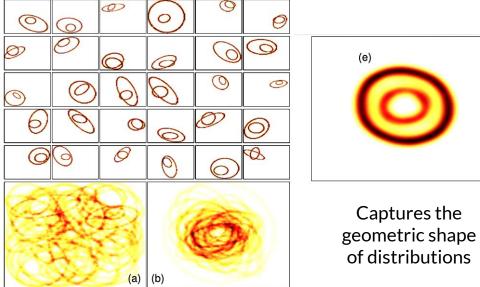
Optimal Transport and Wasserstein Distance



Ref: Python Optimal Transport Documentation

Barycenter vs Centroid





Img source: Fast Computation of Wasserstein Barycenter, Marco Cuturi

Barycenter Example - Covid Testing Sites

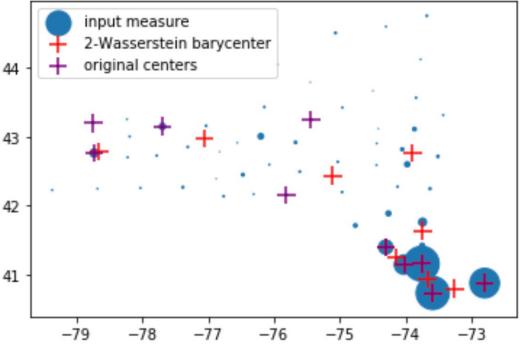
Input Measure

• From JHU Covid-19 Repository, April 1st, 2020 cumulative data, before the shelter-at-home order

Original Centers

- Considered as a mean of the distribution
 with n supports
- Only include temporary testing sites, only use the resources that the state can deploy <u>Wasserstein Barycenter</u>
 - Note: more support than original centers, counter the effect of disproportionately large density around NYC area
 - Still, resemblance between the two means

NY State Covid Cases Barycenters



Data source: JHU Covid-19 Repository

K-Means with Wasserstein Distance/Barycenter

<u>K-Means Algorithm</u>

- 1. Initialization: randomly pick k centroids from the samples as initial cluster centers;
- 2. Expectation Step: Assign each sample to its **nearest** centroid ;
- 3. Maximiazation Step: Move €helcentkdid to the center of samples that were assigned to it;
- 4. Repeat steps 2 and 3 until the cluster assignments do not change/ convergence/ max itr reached.

Sets: $S_1...S_k$ Mean distributions: $m_1...m_k$ Samples: $X_1...X_n$

Traditional K-Means

Expectation Step for p in 1...n :

 $argmin_{j} \| \boldsymbol{x}_{p} - \boldsymbol{m}_{j} \|^{2}$

 $\frac{\text{Maximization Step}}{\text{for j in 1...k}:}$ $m_j = \frac{1}{|S_j|} \sum_{x_p \in S_j} x_p$

K-Means with Wasserstein

Sets: $S_1...S_k$ Mean distributions: mSamples: $X_1...X_n$

 $m_1...m_k$

Expectation Step for p in 1...n :

 $argmin_j W(x_p, m_j)^2$

Maximization Step for j in 1...k :

 $m_j = min_{m_j} \frac{1}{|S_j|} \sum_{\mathbf{x}_j \in S_i} W(x_p, m_j)^2$

Implementation - Shape Experiment

Problem Setup

99 Shape Dataset : 9 classes x 11 images

Turned into probability distributions and shuffled

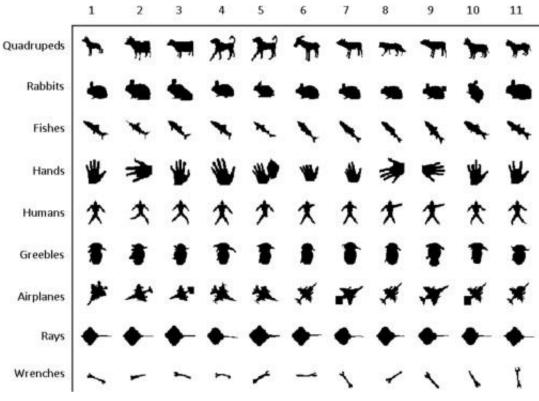
Objective:

Classify into 9 sets and find their means

K-means: Good for clustering

Barycenter: No way to find multiple at once but good for capturing geometric shape

Data source: Shape Indexing of Image Dataset (SIID), Brown University



Computing Wasserstein Distance

Kantorovich Formulation

$$OT(a, b) = \min_{\gamma} \sum_{i,j} \gamma_{i,j} M_{i,j}$$

s. t. $\gamma 1 = a; \gamma^T 1 = b; \gamma \ge 0$

Regularized Wasserstein Distance

$$\gamma^* = \arg \min_{\gamma} \sum_{i,j} \gamma_{i,j} M_{i,j} + \lambda \Omega(\gamma)$$

s. t. $\gamma 1 = a; \gamma^T 1 = b; \gamma \ge 0$
$$\Omega(\gamma) = \sum_{i,j} \gamma_{i,j} \log(\gamma_{i,j})$$

Ref: Python Optimal Transport Documentation, "Orthogonal Estimation of Wasserstein Distance", M. Roland

Challenges

Need to find transport map, matrix of real numbers, very expensive (NP-hard!)

Prev experiment takes half a day to run

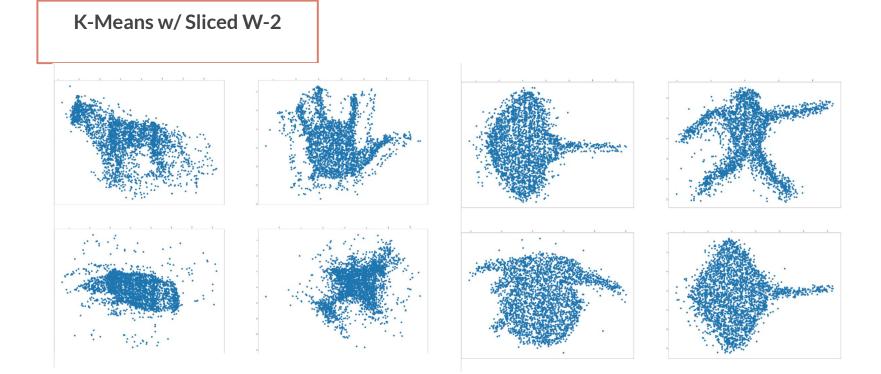
Sliced Wasserstein Distance

$$\widehat{\mathrm{SW}}_p^p(\eta,\mu) = \frac{1}{N} \sum_{n=1}^N \mathrm{W}_p^p((\Pi_{\mathbf{v}_n})_{\#}\eta,(\Pi_{\mathbf{v}_n})_{\#}\mu)$$

where $\mathbf{v}_1,\ldots,\mathbf{v}_N \overset{\mathrm{i.i.d.}}{\sim} \mathrm{Unif}(S^{d-1}).$

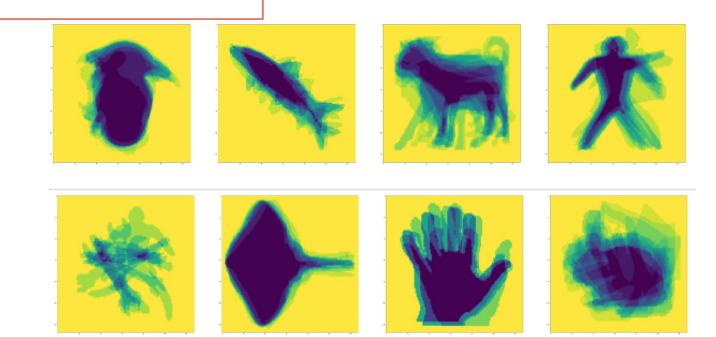
Results - Shape Experiment

Results - Shape Experiment



Results - Shape Experiment

Traditional K-Means



Conclusion and Future Work

Benefits of Wasserstein Barycenter

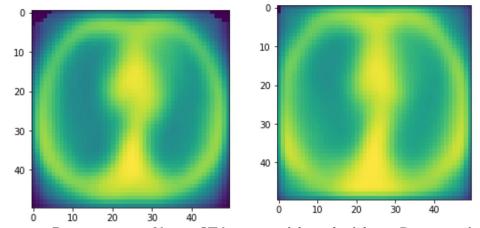
• Captures some geometric features in distributions rather than giving a naive mean

<u>Limitations</u>

- Sliced Wasserstein Distance still slightly more costly than K-means
- Only captures characteristic shape, neglect details, selective on problems that fits

Future Work

- Further optimize K-means with sliced W-2 distance algorithm
- Find other suitable problems for this method



Barycenters of Lung CT Images with and without Pneumonia

Thank you!

Special thanks to:

- -Dr. Yunan Yang
- -Prof. Robert Kohn
- -Prof. Antoine Cerfon & SURE Program
- -Prof. Matthew Leingang