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1 Introduction

As our society generates increasingly complex
datasets and utilize them for high-stake decision
making systems, we are in need of a procedure
to filter out the effects of unwanted features, or
factors, from our data distributions. A few exam-
ples of said unwanted features may include fea-
tures that correlate with sensitivity attributes re-
sulting in discriminate predictions, batch effects
that induce variability within clinical experiment
data that does not inform the differential effective-
ness between treatment policies, and uncontrol-
lable factors that does not inform policy decision-
making.

While there are many attempts to address these
undesirable effects through regularizers on ma-
chine learning objective that discourages predic-
tions correlating with said unwanted variables [5]
or induce sparsity to encourage simplicity in fea-
tures selected [8], there are currently, to the best of
our knowledge, no method that combat the afore-
mentioned challenges by directly mitigating the
effect of said variables from the data distribution
itself. In this paper, we present a method to re-
duce the effect of unwanted variables from a data
distribution via optimal transport (OT). Formally,
we define the effect of a variable as the variability
induced by said variable. It follows that our so-
lution is an optimal transport-driven approach to
reduce the variability of the data distribution with
respect to select variables. In fact, the problem
may be reduced to solving for an optimal trans-
port barycenter of the conditional distributions of
the observed data given the select factor(s).

Building upon this OT formulation of the variabil-
ity reduction problem, we also explore a scenario

in which not all values of the unwanted variable
is known. The relevance of this problem formu-
lation is significant, particularly in some of our
highest stake decisions. In the clinical setting,
oftentimes data is incomplete due to fragmenta-
tion in data collection such as difference in equip-
ment capability and documentation requirements
across hospitals. On the other hand, despite our
best attempt at fair decision-making systems, sen-
sitivity attributes may not always be present due
to individual incentives to withheld said infor-
mation (such as voluntary identifications for job
applications), yet they remain crucial for training
and validation of a model that adhere to some no-
tion of fairness across observation groups.

Our Contributions In this paper, we propose a
flexible method for the removal of variability in-
duced by select features through solving an opti-
mal transport barycenter problem. Furthermore,
we provide an extension to the framework under
the problem setting in which the exact value for
the select feature is not known across the distri-
bution, a semi-supervised regime for variability
reduction. Lastly, we conclude with discussing
the extensions of this method for factor discovery
and data augmentation.

2 QOutline

We begin with formulating the problem, which
includes a discussion on notation and an intro-
duction of the necessary background in optimal
transport. For the bulk of the paper, we discuss
approaches for solving the barycenter problem
and contrast the various methods of optimization.
Next, we provide numerical results of our data
on simulated and real-world datasets. Lastly, we



provide a discussion of possible extensions of this
method.

3 Problem Formulation

Let x be the observed data and z be the factor of
interest such that we wish the filter out the effect
of z from x. We propose that one can address this
variability reduction problem by finding a new
representation of x, call it y, that minimizes the
deformation from x yet is independent from z.
Formally, we would like to optimally transport the
distribution of x to y subject to the condition that
y is independent of z.

A Refresher on Optimal Transport The optimal
transport (OT) problem dates back to the French
mathematician Gaspard Monge in 1781 where his
objective was to find an optimal plan for trans-
porting mass from a pile of sand into a pit [9].
Later on, the problem is generalized to the trans-
portation of the probability distributions and led
to a proposed metric on the space of probabil-
ity measures known as the Wasserstein distance.
Today, the optimal transport problem is garner-
ing attention from researchers in the mathemat-
ics, statistics, and machine learning community
due to its theoretical elegance and practical appli-
cation to data-driven problems which led to ef-
ficient solvers or reformulations of the optimal
transport problem under different problem set-
tings and successes of its integration to applica-
tion areas such as generative modeling [1], do-
main adaptation [3, 7], computer graphics [6],
single-cell sequencing [2], and etc.

OT Variability Reduction Let us denote the con-
ditional probability distribution of x given z by
p(x|z) and the probability distribution of z as
v(z). We can quantify the data deformation be-
tween x and the transformation y using the 1-
Wasserstein distance

min /c(x,y)p(x\z)’y(z)dxdy st.yllz (1)
y=T(xz2)

where T denotes a transport map from x to y and
c(-,-) is a ground cost function between x and
y. Under this formulation, the distribution of y,
#(y), is the OT barycenter of the set of p(x|z) for
all values of z.

Data-Based OT Variability Reduction In the real
world, we often do not have access to the distri-
butions p(x|z) and y(z). Instead, we have a sam-
ple {x;,z;}; of the observation and their associ-
ated factors. Under this setting, we can rewrite
the variability reduction problem as follows (al-
beit with a slight abuse of notation)

min Y c(x;,yi) sty ULz )
yi=T(xizi) 5

Now that we have formulated the problem in
terms of data samples, let us discuss how to solve
the above constrained optimization problem.

4 Methods

Satisfying Independence Perhaps a question re-
garding the proposed formulation is: how do we
ensure that y is independent of z? To do this, we
propose the use of some test function, F(y,z), that
evaluates to 0 when our independence condition
is met and strictly positive otherwise. Incorpo-
rating this test function with the Lagrangian mul-
tiplier method transforms our constrained opti-
mization into the following unconstrained opti-
mization problem

min max ) _{c(x;,y;) +AF(y;,zi)}  (3)
yi=T(x;z;) A 5

where A is the Lagrangian multiplier.

In terms of the choice for the test function F, one
can adapt many proxies of independence. For ex-
ample, one can utilize correlation to test for linear
independence or for the conditional expectation
of y, 7(z), to be independent of z. The choice of
the test function dictates the form of relaxation
from the general independence condition that our
algorithm actually guarantees, which determines
the type of variability reduction that we are able
of performing.

Among many choices, we propose the use of mu-
tual information between y and z as our test func-
tion. In particular, the mutual information is de-
fined as

I(y,z) :== Dk (7t(y, 2) |u(y)v(2)) 4)

where 71(y,z) is the joint probability between y
and z. Essentially the mutual information is the



Kullback-Leibler divergence between the joint dis-
tribution and the product distribution of y and z.

Under our data-based formulation, we can
rewrite the mutual information term as

;bg ("(y“zl)> (5)

1(yi)v(z)

where we will approximate the distributions of 7,
#, and <y using kernel density estimation. In par-
ticular, let there be kernels K} and Ké for y and z
respectively with bandwidths « and B. It follows
that our test function is

L Ki (v, y) K5 (2, 21) ) ©
¥ Ka (v yr) Y K5 (z,21)

F(y,z) :=log <

Flow-Based Optimization While there are many
methods for solving the combined objective of
Eq. (3) and Eq. (6), we propose a flow-based
approach. Instead of solving for the transport
map T as a part of the optimization procedure,
we initialize y to be equivalent to x and allow
them to move around freely, like a flow, in a gra-
dient descent scheme. Additionally, instead of
solving a min-max optimization procedure, we
propose a slow increase in A over the gradient
descent iteration. The specific choice of our op-
timization procedure is based primarily on in-
tuition rather than a theoretical justification, as
there are many other comparable approaches out
there for solving such unconstrained minimax op-
timization problems with a multitude of hyper-
parameters. However, we would like to highlight
why our choices were made this way and add that
this algorithmic choice shows promising perfor-
mance in practice.

On the matter of initializing y as x as opposed to
random initialization, this is because minimizing
data deformation is one of the two central goals of
our variability reduction problem (the other be-
ing ensure that the resulting representation of the
data y is independent from the unwanted variable
z). By initializing y as x, we ensure that the initial-
ization does not stray too far from the original dis-
tribution of the data, which could otherwise have

the adverse effect of inducing large enough defor-
mation that lead to divergence or convergence at
a sub-optimal point.

We make the choice of scaling A as the itera-
tion increases instead of solving for a min-max
optimization problem for the following reasons.
Firstly, min-max optimization solvers typically re-
quire second-order information for convergence,
which is costly. Secondly, the nature of our opti-
mization problem does not put y and z in com-
plete adversarial positions. As long as y and z
are independent, A should not need to further
increase and y can move freely to minimize the
data deformation subject to the large value of A
that is sufficient for asserting independence. In
other words, we have reasonable belief that A
need not to continually increase after reaching a
sufficiently large value in practice since the worse
offense of the independence condition occurs at
initialization with x = y and A may grow large
enough to remove the y from x as the algorithm
carries on. Thirdly, a direct extension of the vari-
ability reduction problem, factor discovery, in-
volves an additional maximization over the space
of z which would effectively turn this problem
into a max-min-max problem if we insist solving
the current problem as a min-max optimization
method. A max-min-max problem is even nastier
to solve in practice, and for the sake of reducing
technical challenges of the factor discovery prob-
lem, we adapt a scaling growth of A in our algo-
rithm instead of solving this as a min-max prob-
lem, i.e. we are solving for

min Y {c(x;,yi) + AF(yi,zi)} )
yi:T(inZi) i

such that A; — oo as t — oo.

Semi-Supervised OT Variability Reduction
Suppose that now the identify of some factors are
unknown, denoted as z’. Formally, we have sam-
ples {x;,z;}; such that there exists z; = z° and let
z; take on a finite set of values, i.e. K discrete
classes. Our proposal is to split each observation
y; into K versions of itself, {y;, zx}X_; and to as-
sign each of them a probability p;, for belonging
the particular class.
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Figure 1: The kernel density estimation (KDE) of the y; given z € {z1,2z,} in the Gaussian experiment over
the optimization procedure. On the left, (a) shows that the y; is initialized to reflect the x; and hence the
KDE approximates p(x|z1) and p(x|z;) respectively. On the right, (b) shows the approximations of the y
that are now independent of z yet still preserve the shape of the original data distributions.

In this case, the variability reduction problem be-
comes

min  max)_paf{c(x;,yi) + AF(Yix zk)} (8)
Yie=T(xiz) A T

such that the probability pj; is updated as follows
Pkt (Yik)

Yk Pt (Yige)

where f represents the iteration.

Here, y is once again approximated using the ker-
nel density estimation with a slight modification

w(yin) = YN piw K (Yije yip) )
T

t+1
ik

such that every center is weighted by its proba-
bility. Note that this modification applies to in-
stances of kernel density estimation invoked for F
as suggested in Eq. (6). Naturally, this formula-
tion will place less emphasis on version of y; that
are associated with less probable values of z. For
observations (y;, z;) such that the factor is known,
we assign p; to be 1 if k = i and 0 otherwise.
For observations (y;,z’) such that the factor is un-
known, we can initialize p; ; to be 1/K with some
noise and then normalize.

There exists a hidden challenge with this formu-
lation. Without additional guardrails, it is possi-
ble for the probability update to occur too quickly

and for an observation to be incorrectly associ-
ated with a class before the independence asser-
tion takes effect, i.e. before A becomes sufficiently
large. To mitigate this, we recommend two addi-
tional procedures. First, we can perform a slow
update to the probabilities p;; governed by some
learning rate y

Pt = P+ (el — Pl
where we would use p instead of p in Eq. (8) and
Eq. (9). Second, we can begin to update the prob-

abilities only after A becomes sulfficiently large.

5 Results

To validate our method, we conducted some
preliminary numerical experiments on toy ex-
amples. All the code is publicly available at
github.com /KataTech /OTFactorDiscovery.

Gaussian For our first simulation, we adapt the
simple case that z; € {z1,22}, p(x|z) are Gaussian
distributions with the mean is -2 if z; = z; and 2
otherwise along with a variance of 1, and y(z) is
a discrete uniform distribution. In other words,
we have data points x; that comes from one of
two Gaussian distributions depending on their z;
values. As for the choice of kernel, we use the
isotropic Gaussian kernel with ¢ = 1. Figure (1)
shows the initial distributions of y given their cor-


https://github.com/KataTech/OTFactorDiscovery

responding z and the final distribution of y after
the variability induced by z has been eliminated.
As we can see from the resulting distribution, it is
no longer possible to discern which Gaussian dis-
tributions generated the original points and their
overall distributions is relatively preserved, satis-
fying both the independence and the preservation
of the data conditions.

Iris Moving beyond experimenting on simulated
data, we also apply our method on the slightly
more complex case of the popular iris dataset

from the UCI Machine Learning repository. The
iris dataset is a collection of 4-feature observations
from different flowers, with a total of 3 classes. In
our experiment, we attempt to remove the vari-
ability induced by the flower identify from the 4
features.

For ease of visualization, we project the data to
its first two principle components computed us-
ing the pre-transformed, standard iris data. From
Figure (2), we can see that our algorithm effec-
tively removes the variability induced by the flo-
ral classes.

Pre-Transformed IRIS Data Barycenter
2.0 2.0
1.5 1.5
[
*
101 1.0 1 . ®
[}
®e . e o
(]
051 °,° 0.5 1 g e
o Py ot §"-
~ L]
0.0 4 g ) 0.0 1 .‘J
4 . ) o™ ‘(..!
o . . *
| L4 | H
-0.5 . c."r. -0.5 o | k.
. o P
®
-1.0 L] —1.0 rl
L]
-1.5 —-1.5
-2.0 T T T T T T T -2.0 T T T T T T T
-4 -3 -2 -1 0 1 2 3 -4 -3 -2 -1 0 1 2 3 4
PC1l PC1l

Figure 2: Visualization of the Iris dataset features on the first two principle component axis before and
after reducing the variability induced by the floral classes. Each color represents a unique floral class.

6 Conclusion

We propose a general framework for reducing the
variability of specified features from a data dis-
tribution using optimal transport. From the gen-
eral framework, we then introduced a data-driven
formulation and relaxation for inducing indepen-
dence between the transformed data distribution
and the specified features for practical applica-
tions. In the context of this framework, we high-
light optimization tricks in practice and show-
cased the effectiveness of our method on simu-
lated datasets.

Limitations There are two particularly strong lim-
itations of the current method that comes to mind.
Firstly, the flexibility of this method also requires

significant trial-and-error with different hyperpa-
rameters in practice. In particular, there is no
clear "best" choice of a sufficiently large A, the
kernels, and their corresponding bandwidths for
KDE. Secondly, the semi-supervised variability
reduction regime can be used for classification of
the unknown observations by design, where we
seek to predict the values of z. However, prelim-
inary experiments show that the accuracy is sub-
par compared to most simple classifiers on rela-
tively simple datasets.

Future Works Although our discussion focuses
on reduction of variability from unwanted vari-
able, our framework provides an intuitive mea-
sure of factor importance implicitly. Specifically,
one could quantify the important of a particular



factor by measuring the reduction in variability as
a result of filter out that factor. By searching over
the space of z to maximize this reduction in vari-
ability, our work naturally extends into a solution
for a hidden factor discovery problem.

On the other hand, our work also lays the ground-
work for a new data augmentation technique:
suppose that there are few observations x; asso-
ciated with a factor of interest z*, we can create
more samples of observations associated with z*,
call it x}, by pushing all the observations x; to the
barycenter y; and then reversing them with us-
ing the inverse map Tzil. Although our formula-
tion does not include a direct computation of the
transport map, we believe it is feasible to perform
the reversal by reformulating Eq. (3).

Another promising direction is to utilize our
method as an unsupervised pre-training proce-
dure on the data distribution prior to downstream
supervised training, which has been demon-
strated to be helpful empirically [4]. Since our
method can reduce the variability induced by un-
wanted variables, we are hopeful that this may
result in more robust results in unison with deep
neural networks, which are known to overfit to
noises in the supplied data. In the context of
machine learning fairness, it may be better to re-
duce the data variability associated with sensitiv-
ity attributes prior to the supervised training pro-
cedure as opposed to adding a regularization to
penalize prediction dependence on sensitivity at-
tributes. This intuition stems from the fact that
with our method, the model only has access to a
data set with the dependencies to sensitivity at-
tributes removed a priori, and therefore should
not use information related to them during the
learning process.
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