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Doubly-Periodic Geometries

The	Doubly-Periodic	geometry	(DP)	
(done	by	Ondrej)

The	bottom	wall	geometry	
(goal)

:	Gaussians	centered	at	rk	with	effective	hydrodynamic	radius	a.

• Dashed rectangle representing our actual domain of computation.
• Our method also applies to the slit channel geometry with both bottom & 

top walls; won’t be today’s topic for simplicity.
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Bottom Wall Stokes Flow

We aim to solve the Stokes equations:

where p is pressure, η is viscosity, u is fluid velocity.

on a doubly-periodic domain [x, y]∈[-L, L]×[-L, L] and z∈[0, +∞).

No-slip BCs on the bottom wall,

• We will focus on the no-slip BCs case, our method can also be 
extended to bottom wall/slit channel with an active slip.



Clarifications for the model approximations

2a Fk

τk

• The real system: actual particles (no fluid inside each sphere); BCs on 
each particle’s surface. Particles will not overlap the wall. (Note: here 
we refer to particles as for colloids at mesoscopic scale; for ions the 
immersed particle picture is just a model.)
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• The model: particles as Gaussians (fluid everywhere) with effective 
radii a (no point particle for Stokes). Particle velocities decided from 
averaging the fluid velocities near rk. Particle overlapping the wall is 
unavoidable in BD simulations.



Force-Coupling Method (FCM) Formulations

In the FCM (Maxey & Patel 2001; Lomholt & Maxey 2003), the surface 
traction on a spherical particle of radius a is replaced by finite, smoothly 
varying Gaussian and the multipole expansion truncated at dipole:

ΔM and ΔD 3D Gaussian envelopes, with standard deviations,

• The standard deviations gF and gτ are decided from the Stokes’ 
law for a sphere with radius a translating/rotating in free-space:
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Force Torque

• FCM similar to IBM in modeling and simulation: both capture long-ranged 
hydrodynamic interactions.



Wall Overlap

Modification of the Gaussian envelopes that overlap the wall

where rkim is the particle’s point of reflection about the bottom wall.

2D illustrations:

• In a Brownian dynamic simulation, overlapping the wall is unavoidable
• Ensure particle mobility goes to zero as it approaches the no-slip wall

Actual particle with positive density

Image particle with negative density at rkim

“Empty particle”
rk

zk



Mobility Matrix

Particle linear and angular velocities interpolated from fluid:

FCM provides a far-field approximation of the exact mobility problem:

• Mobility matrix is symmetric and positive semidefinite (SPD)
• We will focus on the translation-translation mobilities (entries of Mtt)

where MFCM is the mobility matrix.



The DP + Correction Method

The Stokes problem under bottom wall geometry can be divided
into two subproblems.

Subproblem #1: the “DP” problem

with periodic BCs in xy directions and free-space BCs in z.

Note: 
• same source term f as our original problem, i.e., only particles, no 

wall present.
• For bottom wall/slit channel geometries, the unbounded BCs in z 

can be reduced onto [0, H] through the Dirichlet-to-Neumann map, 
based on the fact that f  is 0 outside [0, H].



The DP + Correction Method

Subproblem #2: the “Correction” problem (wall correction, no particle)

with periodic BCs in xy directions and z∈[0, +∞), and with slip BCs
on the bottom wall:

where uDP is the solution to the “DP” problem. By linearity,

• The correction problem is homogeneous and can be solved analytically.
• The DP problem can be handled numerically through Fourier/

Chebyshev spectral method.



Boundary Value Problems

The DP solver (Ondrej): 
Eliminating pressure p through a projection approach, take Fourier 
transforms in xy directions gives Four scalar BVPs for each k≠0

and

and

and

• One can solve the BVPs using the Chebyshev spectral integral BVP solver 
of Greengard [1], or a Galerkin approach (for Brownian Dynamics).

[1] Leslie Greengard. Spectral integration and two-point boundary value problems. SIAM Journal on 
Numerical Analysis, 28(4):10711080, 1991.

• Fourier/Chebyshev computations log-linear time using 3D FFTs.

• Main CPU cost in kernel spreading/interpolation to/from the grid.

(solve first)



Analytical Wall Correction

The correction solve (homogeneous Stokes + BCs):
solution in the form of plane wave expansion,

the analytical solution is,

where k=[kx, ky], ν=[x,y], and with slip BCs 

u0, v0 and w0 are from the numerical solution of DP so known in k-space.



Single particle trans-trans mobility in slit channel

Our results in good agreement with theory by Faxen, and  also matches well 
with the immersed boundary method.

Parallel and perpendicular normalized trans-trans mobilities for a single 
particle in slit channel of width H=19.2a



Trans-trans coupling above a wall

The solid lines correspond to the direct formulas of Swan and Brady. We are in 
reasonable agreement with the theoretical predictions for h>a.

Trans-trans coupling for two particles above a no-slip wall



Switching to ES kernel

The “Exponential of a Semicircle” (ES) kernel is given by,

where α=wh/2, where h is the grid spacing in xy, w is the number of grid 
points to which we spread in each direction.

• Almost optimal convergence in w in terms of spreading/interpolation [2]

• However, it is not isotropic in 3D, loss of translation/rotation invariance

[2] Alex Barnett, et, al. A parallel non-uniform fast Fourier Transform library based on an "Exponential of Semicircle" kernel, SIAM Journal on 
Scientific Computing. 2019;41(5):C479-504.

Optimal combinations of wF and βF along with optimal errors and effective radii



Numerical Results: Trans-trans Mobilities with ES kernel

Normalized parallel trans-trans mobilities with ES kernel

Gaussian needs ~10 pts in each direction to obtain 3~4 digits accuracy.
Reference calculated using ES (wF = 12) with refined mesh (for wF = 6), so that 
the hydrodynamic radius a remains the same.



Numerical Results: Trans-trans Mobilities with ES kernel

Normalized perpendicular trans-trans mobilities with ES kernel

Reference calculated using ES (wF = 12) with refined mesh (for wF = 6), so that 
the hydrodynamic radius a remains the same.
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Thank you!


