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Doubly-Periodic Geometries
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® : Gaussians centered at r with effective hydrodynamic radius a.

e Dashed rectangle representing our actual domain of computation.
e Our method also applies to the slit channel geometry with both bottom &
top walls; won’t be today’s topic for simplicity.



Bottom Wall Stokes Flow

We aim to solve the Stokes equations:

Vu—Vp=—f.
Meat=10,

on a doubly-periodic domain [x, y]e [-L, L]x[-L, L] and z€ [0, +).

No-slip BCs on the bottom wall,

u‘zzo =0 9

where p 1s pressure, 1 1s viscosity, u 1s fluid velocity.

* We will focus on the no-slip BCs case, our method can also be
extended to bottom wall/slit channel with an active slip.



Clarifications for the model approximations
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Bottom wall
e The real system: actual particles (no fluid inside each sphere); BCs on

each particle’s surface. Particles will not overlap the wall. (Note: here
we refer to particles as for colloids at mesoscopic scale; for 10ons the
immersed particle picture is just a model.)

e The model: particles as Gaussians (fluid everywhere) with effective
radil a (no point particle for Stokes). Particle velocities decided from
averaging the fluid velocities near r«. Particle overlapping the wall is
unavoidable in BD simulations.



Force-Coupling Method (FCM) Formulations

In the FCM (Maxey & Patel 2001; Lomholt & Maxey 2003), the surface
traction on a spherical particle of radius a 1s replaced by finite, smoothly
varying Gaussian and the multipole expansion truncated at dipole:
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Ay and Ap 3D Gaussian envelopes, with standard deviations,
gr = a/+/7 and g, = a/(6/7)"/?

e The standard deviations gr and g; are decided from the Stokes’
law for a sphere with radius a translating/rotating in free-space:

F = 6mnalU and T = 87mna’$2

e FCM similar to IBM in modeling and simulation: both capture long-ranged
hydrodynamic interactions.



Wall Overlap

Modification of the Gaussian envelopes that overlap the wall
AV(z—r)=Alx—1) — Al® —r™), if 2p < Zimg
where ri'™ is the particle’s point of reflection about the bottom wall.

2D 1illustrations:
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e In a Brownian dynamic simulation, overlapping the wall is unavoidable
e Ensure particle mobility goes to zero as 1t approaches the no-slip wall



Mobility Matrix

Particle linear and angular velocities interpolated from fluid:

V. = / u(x)AY (z — r)de |

1

Q. = 5 /w (V x u(x)) A (x — r)dz .

FCM provides a far-field approximation of the exact mobility problem:
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where Mrcum 1s the mobility matrix.

e Mobility matrix i1s symmetric and positive semidefinite (SPD)
e We will focus on the translation-translation mobilities (entries of M")



The DP + Correction Method

The Stokes problem under bottom wall geometry can be divided
into two subproblems.

Subproblem #1: the “DP” problem

nV*upp — Vppp = —f ,
V- Upp — 0.

with periodic BCs in xy directions and free-space BCs in z.

Note:

e same source term f as our original problem, i.e., only particles, no
wall present.

e For bottom wall/slit channel geometries, the unbounded BCs in z

can be reduced onto [0, H] through the Dirichlet-to-Neumann map,
based on the fact that f i1s O outside [0, H].



The DP + Correction Method

Subproblem #2: the “Correction” problem (wall correction, no particle)
77V2,u’007"7’ T vpcorr _— O ]
Vs WUcorr =— 0 3

with periodic BCs in xy directions and ze [0, +°), and with slip BCs
on the bottom wall:

ucorrlz:O = _UDP‘z:O .
where uppis the solution to the “DP” problem. By linearity,
U = UpDPp + Ucorr and P = PDP T Pcorr -

* The correction problem 1s homogeneous and can be solved analytically.
* The DP problem can be handled numerically through Fourier/
Chebyshev spectral method.



Boundary Value Problems

The DP solver (Ondrej):
Eliminating pressure p through a projection approach, take Fourier
transforms in xy directions gives Four scalar BVPs for each k=0

(0. — k= vk fr + z,k.yfy +0.f. and (0, + k)D|2=o0(or )y =0, (solve first)
7] (f)zz = ,112) = l'lf:c]} o ]Ex and ((9z = k)?l|z:0(0r H) = zl:l,kxﬂz:()(or H)/(an),
7] (E)zz — AQ) W = ()zﬁ T ]Ez and ((9z =f k)’lf)|z:0(0r H) = ﬁ|z=0(or H)/(QT])

e One can solve the BVPs using the Chebyshev spectral integral BVP solver
of Greengard [1], or a Galerkin approach (for Brownian Dynamics).

e Fourier/Chebyshev computations log-linear time using 3D FFTs.

e Main CPU cost in kernel spreading/interpolation to/from the grid.

[1] Leslie Greengard. Spectral integration and two-point boundary value problems. SIAM Journal on
Numerical Analysis, 28(4):10711080, 1991.



Analytical Wall Correction

The correction solve (homogeneous Stokes + BCs):
solution in the form of plane wave expansion,
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where k=[kx, ky], v=[x,y], and with slip BCs

ucorr|::0 — _ju'DplzzO — ['U'O-,UO:U"O]

the analytical solution is,
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Weorr (K, 2) = (kwo(k) — ikytig(k) — iky'iﬁg(k)):e_k: + "L[,'O(k)e_l"‘: ,

uo, vo and wo are from the numerical solution of DP so known in k-space.



Single particle trans-trans mobility in slit channel

Parallel and perpendicular normalized trans-trans mobilities for a single
particle in slit channel of width H=19.2a
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Our results in good agreement with theory by Faxen, and also matches well
with the immersed boundary method.



Trans-trans coupling above a wall

Trans-trans coupling for two particles above a no-slip wall
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The solid lines correspond to the direct formulas of Swan and Brady. We are in
reasonable agreement with the theoretical predictions for A>a.



Switching to ES kernel

The “Exponential of a Semicircle” (ES) kernel 1s given by,
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—=CY,

dp(z;a) =

0, otherwise.

where a=wh/2, where h is the grid spacing in xy, w is the number of grid
points to which we spread in each direction.

e Almost optimal convergence in w in terms of spreading/interpolation [2]

 However, it 1s not isotropic in 3D, loss of translation/rotation invariance

Optimal combinations of wr and [ along with optimal errors and effective radii

WE 4 5 6
Br/wp | 1.785 | 1.8%6 | 1.714
Y%o-errory | 0.3695 | 0.0554 | 0.0214

a/ha, | 1.2047 | 1.3437 | 1.5539

[2] Alex Barnett, et, al. A parallel non-uniform fast Fourier Transform library based on an "Exponential of Semicircle" kernel, SIAM Journal on
Scientific Computing. 2019;41(5):C479-504.



Numerical Results: Trans-trans Mobilities with ES kernel

Normalized parallel trans-trans mobilities with ES kernel
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Gaussian needs ~10 pts in each direction to obtain 3~4 digits accuracy.

Reference calculated using ES (wr= 12) with refined mesh (for wr= 6), so that
the hydrodynamic radius a remains the same.



Numerical Results: Trans-trans Mobilities with ES kernel

Normalized perpendicular trans-trans mobilities with ES kernel
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Reference calculated using ES (wr= 12) with refined mesh (for wr= 6), so that
the hydrodynamic radius a remains the same.



Thank you!



