
How to git

A quick intro

Georg Stadler
stadler@cims.nyu.edu

March 31, 2022

1 / 17

stadler@cims.nyu.edu


Git history and overview

I Git is a version control systems (keeps all previous versions),
others include: subversion, cvs, mercurial

I Useful for code, but also any other text-based projects:
papers, LATEX, letters, class material, . . .

I Git has similarities to Dropbox, Google Drive, but is superior
for cooperations (also with yourself)

I Git is open-source, started in 2005, developed by developers of
Linux kernel (Linus Torvalds) after disagreement with different
commertial repo

I Github, Bitbucket, Gitlab etc. mostly provide storage and web
platform for git, but have nothing to do with the software
itself

I Git is local, you can (and should!) use it by yourself

2 / 17



Why Use Version Control?
Slides adapted from Andreas Skielboe

A Version Control System (VCS) is an integrated fool-proof
framework for

I Backup and Restore

I Short and long-term undo

I Tracking changes

I Synchronization

I Collaborating

I Sandboxing

... with minimal overhead.

3 / 17



Centralized Version Control Systems

To enable synchronization and collaborative features the database
is stored on a central VCS server, where everyone works in the
same database.

Introduces problems: single point of failure, inability to work
offline.

4 / 17



Distributed Version Control Systems

To overcome problems related to centralization, distributed VCSs
(DVCSs) were invented. Keeping a complete copy of database in
every working directory.

Actually the most simple and most powerful implementation of
any VCS.

5 / 17



Git Basics - The Git Workflow

The simplest use of Git:

I Modify files in your working directory.

I Stage the files, adding snapshots of them to your staging
area.

I Commit, takes files in the staging area and stores that
snapshot permanently to your Git directory.

6 / 17



Git Basics - The Three States

The three basic states of files in your Git repository:

7 / 17



Git Basics - Commits

Each commit in the git directory holds a snapshot of the files that
were staged and thus went into that commit, along with author
information.

Each and every commit can always be looked at and retrieved.
In Git all remotes are equal.

8 / 17



Git Basics - Working with remotes

The easiest commands to get started working with a remote are

I clone: Cloning a remote will make a complete local copy.

I pull: Getting changes from a remote.

I push: Sending changes to a remote.

Fear not! We are starting to get into more advanced topics. So
lets look at some examples.

9 / 17



Git Basics - Advantages

Basic advantages of using Git:

I Nearly every operation is local.

I Committed snapshots are always kept.

I Strong support for non-linear development.

10 / 17



Hands-on - Getting started with remote server

When the remote server is set up with an initialized Git directory
you can simply clone the repository:

Cloning a remote repository

$ git clone <repository>

You will then get a complete local copy of that repository, which
you can edit.

11 / 17



Hands-on - Getting started with remote server

With your local working copy you can make any changes to the
files in your working directory as you like. When satisfied with your
changes you add any modified or new files to the staging area
using add:

Adding files to the staging area

$ git add <filepattern>

12 / 17



Hands-on - Getting started with remote server

Finally to commit the files in the staging area you run commit
supplying a commit message.

Committing staging area to the repository

$ git commit -m <msg>

Note that so far everything is happening locally in your working
directory.

13 / 17



Hands-on - Getting started with remote server

To share your commits with the remote you invoke the push
command:

Pushing local commits to the remote

$ git push

To recieve changes that other people have pushed to the remote
server you can use the pull command:

Pulling remote commits to the local working directory

$ git pull

And thats it.

14 / 17



References

Some good Git sources for information:

I Git Community Book - http://book.git-scm.com/

I GitHub - http://github.com/

I Bitbucket - http://bitbucket.com

I Gitlab - http://gitlab.com

I Git from the bottom up - http:
//ftp.newartisans.com/pub/git.from.bottom.up.pdf

I Understanding Git Conceptually -
http://www.eecs.harvard.edu/~cduan/technical/git/

I Git Immersion - http://gitimmersion.com/

15 / 17

http://book.git-scm.com/
http://github.com/
http://bitbucket.com
http://gitlab.com
http://ftp.newartisans.com/pub/git.from.bottom.up.pdf
http://ftp.newartisans.com/pub/git.from.bottom.up.pdf
http://www.eecs.harvard.edu/~cduan/technical/git/
http://gitimmersion.com/


What should (not) be added to a repository?

Git tracks only updated files and uses compression to keep its
memory requirements small. Main rule: mostly add source files
that compile.

I .c, .cpp, .f files YES!

I .tex files YES!

I .aux, .out, .dvi. . . files NO!

I compiled files, object files NO! (large, no diffs possible,
conflicts)

I .pdf files YES/NO!

I large data files NO. . . sometimes maybe

I photos, movies etc. NO! (unless unavoidable)

My rule of thumb: Files in the repository are permanent, only the
best should make it in there (it’s not your trash can!) They should
compile (code/Latex), be (more or less) cleaned up, unless it’s
avoidable only source/text files.

16 / 17



Some git wisedom/opinion

Should I have a few large repositories or many small ones?

I I recommend many small ones

I Easier to manage, commit messages easier to monitor.

I Small memory footprint and faster!

I It’s easy to link two repositories (e.g., code libraries) using git
submodules!

How often should you commit?

I As often as you like (in case of doubt, more often)

I Makes it easier to monitor changes, track down bugs

I If you collaborate, better to avoid conflicts

I For me: feels like a (small) achievement, supports
clean/systematic working style (always look at diff before
committing)

. . . any others??

17 / 17


