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Abstract

Given two collections of points, xi and yj , weighted for intensity, an
adaptive, adversarial methodology is developed for the optimal transport
of one set of points to the other set of points. Such a map provides a
pairing from the initial set of points to the final set of points, a neces-
sary precondition for measuring local change between sets of points. We
consider each set of independent points as discrete samplings of proba-
bility distributions, and seek to find an optimal map T (x) from the ini-
tial distribution onto the final distribution. In our formulation, such an
optimal map method minimizes a transportation cost and the relative
entropy between T (xi) and yj . By reformulating relative entropy into a
mini-max problem, the methodology does not require any predetermined
knowledge of the data. We split our initial and final set of points into
several intermediate distributions, and solve for the optimal transport
map between consecutive, intermediate distributions. Composing these
simple maps constructs a transportation between dissimilar, complex dis-
tributions. This procedure is iterated to guarantee the global solution is
optimal, as given by McCann’s Interpolant Theorem. The procedure is
illustrated through examples in two dimensions.

1 Motivation

Our problem originates from civil engineering, specifically infrastructure man-
agement. There is a need for a universal change detection algorithm to identify
differences between two scanned images, acquired through LiDAR scanning or
other conventional photo-scanning technology. Such an algorithm would be
useful in finding changes between two images of city landscapes, and how those
images evolved over time. The goal of this project was to take an adaptive
optimal transport approach and analyze its effectiveness at pushing forward an
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initial image into a target image, and thereby create an optimal pairing from
the original map to the final map. Adaptive optimal transport seeks to build an
optimal map from the initial distribution of points, xi , to a final distributions
of points, yj . An optimal map is defined as the map that minimizes some cost
function between the two distributions. Our cost function is a reformulated
version of relative entropy. The final optimal map will give information on how
the pixels from the original picture, xi moved in relationship to the pixels of the
final picture, yj . By understanding how these initial pixels have moved, we can
identify areas of change automatically and on large scales.

2 Introduction to Optimal Transport

2.1 Monge Problem

The origin of optimal transport comes from Gasparde Monge’s desire to trans-
port physical materials between two sites at a minimal cost. Given a source
distribution ρ(x) and a target distribution µ(x), the optimal transport map,
T (x) , is the one that minimizes the expected cost of transportation. Such a
map will ”push forward” the distribution in µ to ρ using T . To push forward ρ
using T onto µ (denoted as T#ρ = µ) means the distribution ρ will fall into the
same probability distribution as µ. In the case of pictures, it would mean that
the original picture maps as best it can to the final picture. The general form
of this problem is as follows:

min
T

{∫
c(x, T (x))µ(x) dx

∣∣∣∣ T#ρ = µ

}
The reformulations of the problem by Kantorovich nearly two centuries later,
generalized the formulation to the case for when two measures ρ and µ have
discrete support, and allowed for this problem to be solved through linear pro-
gramming.

Kantorovich’s formulation helped find optimal pairings between supply and
demand. In order to provide a more flexible framework for data science applica-
tions, sample-based techniques to solve the OT problem were developed in [4, 5,
6]. A central question to address when posing sample-based OT problems is the
meaning of the push-forward condition T#ρ = µ when ρ and µ are only known
through samples xi and yj respectively. This is the case in problems dealing
with pictures or LiDAR samplings. In the formulations from [4, 5, 6], the prob-
lem of optimal transport was first reformulated into an adversarial problem,
computing the push forward between pre-determined sets of features over the
two sample sets. In the example of an image, a certain feature corresponds to
a particular attribute of the original image (e.g. shadows in an image). The
problem was then further relaxed into an equality of empirical means. This ap-
proach however raised the trouble of feature selection, and requires knowledge
of what features to look for.

The method described in [Essid et al., 2018] incorporates feature selection
into the formulation of the optimal transport problem. This process is limited

2



to situations of a fixed number of points. We redid this approach considering
the case when certain points carry intrinsic information with it (weights). Not
only does this approach not require any prior knowledge of the data, but it also
moves points in a less naive way, that is, the optimal transport is informed by not
only the location of the final points but also their weights. This technique has
applications in change detection for images, and other data sets with weighted
pixels.

3 Adaptive Optimal Transport

In this formulation of optimal transport, we seek to both push forward the
points xi to yj , such that some T (xi) and yj are from the same distribution.
We measure the similarity of distributions through their relative entropy. In
addition, the problem seeks to minimize the cost in doing such a push forward.
The cost defined in this problem is the distance squared cost, or the Wasserstein
distance.

In our approach, we use a quadratic cost function:φ(x, y) = ‖x− y‖2.

Problem 1. Find the map T : Rd → Rd such that

T (x) = min
f

{∫
‖x− f(x)‖2µ(x) dx

∣∣∣∣ f#ρ = µ

}
As stated in Brenier’s Theorem [Villani, 2003], such a map f does exist, and

for the quadratic cost, the optimal solution is necessarily the gradient of some
convex function φ(x), y = T (x) = ∇φ(x). Our problem transforms therefore
into this slightly modified form:

Problem 2. Find the map T : Rd → Rd such that

T (x) = min
φ

{∫
‖x−∇φ(x)‖2µ(x) dx

∣∣∣∣ ∇φ#ρ = µ

}
Problem 3. Find the convex function whose gradient will correctly satisfy the
push forward condition.

∇φ#ρ = µ (1)

If we can find such a φ that allows us to move the distribution ρ to be as close
to µ as possible, we effectively make the cost function T (x) zero. This is not
a well defined question in its nature, especially when considering dimensions
higher than one [Galichon, 2018]. As iterated in [Villani, 2003], however, a
unique solution to problem 2 of is some convex function. Finding this function
φ is where the extension to relative entropy, or Kullback-Leibler Divergence,
comes in.
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3.1 Kullback-Leibler Divergence

Definition 3.1. For any two given probability distributions ν and δ, the Kullback-
Liebler Divergence, denoted DKL(ν‖δ) to be

DKL(ν‖δ) :=

∫
ln

(
dν

dδ

)
dρ

Intuitively, KL Divergence provides a quantitative representation of how
similar two probability distributions are. A KL-Divergence that is zero means
that the two distributions that are identical. The goal of the push forward
condition is to make T (xi) and yj as similar to each other as possible, therefore
the problem can be thought of as a minimization problem for KL-Divergence.

As previously stated, this minimizer exists for the Wasserstein distance,
as given by Brenier’s theorem. However, the same function that minimizes
Wasserstein distances also provides a unique minimizer for the KL Divergence.

Theorem 3.1. ϕ is a solution to problem 3 if and only if ϕ and satisfies

ϕ = arg min
φ

{DKL(∇φ#ρ‖µ) | ψ is convex} (2)

A proof of this can be found in [Essid et al., 2018].

If we accomplish push forward as best as possible, this ϕ would be ∼ 0. This con-
cludes the minimization portion of our formulation, where we seek to minimize
over the continuous function space φ. Included in the adversarial formulation
is the maximization problem. As proved in [3], the Kullback-Liebler divergence
can be reformulated as a variational problem.

Theorem 3.2.

DKL(ν‖µ) = 1 + max
g

{∫
g(z)dν(z)−

∫
eg(y)dµ(y)

∣∣∣∣ g borel measurable

}
(3)

Notice here we introduce a new variable ν to represent our variational formu-
lation. It is valuable to note that the variational reformulation of the Kullback-
Leibler divergence is a consequence of the convexity of of x → −log(x). When
taking the Legendre-Fenchel transform twice for the defined KL-Divergence, this
variational form is realized.

Notice that the convexity of the relative entropy gives an avenue to include
some convex φ to solve 2. This will come up shortly.

Given two random variables Z distributed through ν and Y distributed as our
original µ with ν << µ we can equivalently express the formula in 3.2 through
probabilistic expectation values:

DKL(ν‖µ) = 1 + max
g

{
E[g(Z)]− E

[
eg(Y )

] ∣∣∣ g borel measuable
}
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We can take this one step further. If we define our ν variable as a result of
the push forward condition as given by 1, it follows that ν ∼ ∇φ#ρ. There-
fore, we can parameterize Z through the push forward condition. Given some
X distributed through ρ, Z ∼ ∇φ#(X). As such, we have introduced the push
forward constraint into our problem! The new form is as follows:

Theorem 3.3.

DKL(∇φ#ρ‖µ) = 1 + max
g

{
E[g(∇φ(X))]− E

[
eg(Y )

] ∣∣∣ g borel measurable
}

By adding our push forward condition, we have also solved the issue of find-
ing a convex φ for which the original cost function would be satisfied. Previously,
we stated that minimizing the KL Divergence is necessarily how one might solve
the cost minimization problem. Now, we have found a way to include that φ
into the construction of KL divergence, a problem previously disconcerting.

In this variational formulation however, our maximization function g will re-
main convex throughout. The first part of the equation containing g(∇φ(X)) is
essentially linear while the second part, eg(Y ) is a negative convex function. As
a result, this guarantees that at least a part of this Lagrangian is convex. This
is not necessarily the case for φ. In the following section, we will discuss how
such a convexity is enforced in order to solve the optimization problem.

With our original problem in mind, we can assume then that the random vari-
ables X and Y are given independent samples x1...xi and y1...yj . From there
we postulate the following approximation of both the samples and their expec-
tations to sums:

DKL(∇φ#ρ‖µ) ≈ 1 + max
g

 1

n

∑
i

g(∇ψ(xi))−
1

m

∑
j

eg(yj)

 (4)

In the formulation in this paper, we take this sample based formulation further,
by considering each sample’s weight, represented by wi or wj respectively:

DKL(∇φ#ρ‖µ) ≈ 1 + max
g

∑
i

wxi g(∇ψ(xi))−
∑
j

wyj e
g(yj)

 (5)

These weights were normalized such that
∑
i w

x
i = 1 and

∑
j w

y
j = 1.

When the minimizing constraint from 3.1 is composed with the maximizing
constraint we arrive at the following optimization equation:

min
φ

max
g

L[φ, g] ≈ arg min
φ

max
g

∑
i

wxi g(∇φ(xi))−
∑
j

wyj e
g(yj)


 (6)
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Where L is our Lagrangian function that defines the optimization problem. This
will be discussed in the following section.

3.2 A Further Look at Mini-Max

The minimax problem is defined by two functions∇φ and g. These two functions
should move as follows:

• ∇φ(xi) This family of functions essentially qualifies the push forward condi-
tion, pushing forward the points xi to where the relative entropy is smallest
compared to yj .

• g(yj) An intuitive understanding of this function is one that highlights areas
of differences. Given a function φ, g will try and maximize the Kullbach-
Libeler Divergence. By the action of simultaneously minimizing and max-
imizing, it is possible to find a saddle point solution.

The optimization problem is solved when g becomes constant (∼ 0) on the
support of the distributions. At that point, φ does not need to push forward
the points xi anymore, and it receives no new highlighting from g.

4 Discretizing the Problem

In [Essid et al., 2018], the authors offer a methodology to tackling this problem
in a discrete setting. The framework we use to solve our problem is through first
making 9 into a standard numerical optimization problem, and then solving this
equation for many local maps created by interpolating the two data sets. This
entire process is iterated again and again until the original data points move
linearly to their final location.

4.1 Solving Several Local Maps

Transporting from one highly complex set of points to another very different
set of points is infeasible given our current equation. We would need to solve
our equation between sets of points that are nearby to one another. In order to
accomplish this, we interpolate the first and the last set of points together. For
N collections of points between the initial set of points xi and the final target
set yj :

zk =
N − k
N

xi +
k

N
yj (7)

This comes with a problem however, in that we are arbitrarily interpolating
these data sets together to achieve several intermediary sets of points from
which we can apply our reformulation of KL Divergence. To address this, we
use a methodology described in [Kuang and Tabak, 2017]. This paper describes
a closed form optimal transport between two Gaussian distributions. Obviously,
highly complex data is rarely Gaussian, but doing this for our data would allow
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for a better guess when computing an optimal transport between two distribu-
tions. We treat both our initial data and our final data as Gaussian functions
being optimally transported onto one another as specified in more depth in
[Kuang and Tabak, 2017]. From solving the optimal transport problem we gain
an image of the original data set xi onto yj and conversely. We name these im-
ages Tx and Ty. The takeaway is that we are no longer simply taking portions
of xi and yj in 7, but rather we are interpolating points between mixtures of xi
with Tx and yj with Ty.
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Figure 1: An example of the solved optimal transport between Gaussian. Here
xi is blue, Tx is black and the target yj is red. yj is clearly not Gaussian
but regardless in our first step we attempt to map as if they were. We attain
disappointing results as a result.
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Figure 2: An example of equation 7 in use where N = 4. There are four zk
maps being constructed between the original blue xi data and the final yj data.
The data being interpolated is a mixture of Tx and xi and yj with Ty, which
provides us intermediary clouds that are simpler to solve.

Our goal is to transport the xi coordinates to the yj coordinates through
the use of these intermediary sets of points zk. Each iteration of the optimal
transport algorithm will push forward our blue points step by step, saving them
in positions that gradually move towards the red coordinates.

Tcomposed = TN ◦ TN−1 ◦ ... ◦ T1 (8)

Once we push forwards from our initial set of points to the final mapping, we
have accomplished a rough estimation of how the original points have evolved
from the first image to the last image. In our applications to city maps, this
would equivalently be an estimation of how the original image has changed to
the final image.

4.2 Parameterizing the Lagrangian

The transported map of initial samples corresponds to the value of ∇φ(x). In
our formulation of this problem, we assigned normalized weights to each point
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rather than dividing though by the number of points for each distribution:

min
φ

max
g

L[φ, g] ≈ arg min
φ

max
g

∑
i

wxi g(∇φ(xi))−
∑
j

wyj e
g(yj)


 (9)

Where wi and wj correspond to the weights of each of the points xi and yj .
The reasoning for this approach was to find a more efficient way of mapping
points of varying intensity, such as pixels in an image. For the case of black and
white images, we would assign each point a certain intensity corresponding to
how bright the pixel is. Such an approach would allow us to pair pixels based
on both the location of each pixel and its grey scale.
While this formula is great in a theoretical sense, it is not possible to minimize
or maximize under infinite function spaces such as φ or g. Therefore we elect
to parameterize our Lagrangian function. From Brenier’s theorem, one of the
constraints of our problem is that it must be convex. Therefore we must select
a function space that is convex when two distributions are nearby. Notice that
because the sets of points we developed from interpolation are nearby one an-
other, we can suppose that their optimal map is a perturbation of the identity.
Therefore we suppose that the function φ is of the form:

φ(x) =
1

2
||x||2 (10)

This allows us to have some reliability that we will land on a solution to the op-
timization problem after each iteration. Our function spaces for φ and g should
be able to detecting and correct global displacements and scaling. In addition,
we would like our functions to be able to handle non-linear transformations. To
do all of this, we take the approach generalized by [Essid et al., 2018], where:

φ(x) =
1

2
xᵀ(I +A0)x+ a1 · x+ φnl(x) (11)

and

g(z) =
1

2
zᵀ(B0)z + b1 · x+ b2 + gnl(x) (12)

where A0, B0 are symmetric matrices in Rdd, a1, b1 are vectors in Rd , b2 ∈ R
is a scalar, and φnl and gnl stand for additional non-linear functions. These
non linear functions serve the purpose of allowing our mappings to fit to more
complex shapes. In our algorithm we chose isotropic Gaussian functions of the
form

φnl = αexp(−v||x− x||
2

) (13)

Where α is a vector in Rd and v is some scalar value acting on the means.
Parameterizing the Lagrangian with vectors α ∈ Ra, β ∈ Rb we set φ(x) = φα(x)
and g(y) = gβ(y). We seek to solve the minimax problem in α ∈ Ra, β ∈ Rb for
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the Lagrangian:

min
φ

max
g

L[α, β] = arg min
α

max
β

∑
i

wxi gβ(∇φα(xi))−
∑
j

wyj e
gβ(yj)



(14)

This function space selection of φ and g adapt with each iteration, changing
their coefficient values as per the evolving shape of the set of points. This is
why we consider our optimal transport as an adaptive optimal transport.

5 Algorithm

In ([Essid et al., 2018]) a procedure is given to update the α and β terms using
a second order gradient descent algorithm, where each new update is implicitly
defined by the prior update. This method however is computationally cumber-
some, therefore in our approach we use the low rank quasi-Newtonian update
schema described in [Essid et al., 2019]. This method implicitly calculates gra-
dients, however rather than computing the Hessian during each iteration, works
out a rank-one approximation of the Hessian for each step. Using gradient
descent, we update the α and β terms as follow:(

αn+1

βn+1

)
=

(
αn
βn

)
− η(B∗)Gn (15)

Where eta → 0 is the learning rate standard in gradient descent, B∗ is the
approximated Hessian described in [Essid et al., 2019] and Gn is the gradient
of the Lagrangian given the current α’s and β’s.

5.1 Backwards step

Now we have a frame work to push forward our initial xi points to a target yj
set of points. Simply pushing forward our points to a final location does not
complete our problem however. Recall that we preform an optimal transport
only on sets of nearby interpolated points. This does not equate to an optimal
transport from the original set of points to the final set of points however. An
ideal optimal transport would move each point linearly from the initial position
to the final position. After the first map was pushed forward, any individual
point would move in a more or less jagged, non-linear progression. Although
the whole set of points are moving towards the final position, any single point
can move backwards, or jagged from its final position. A process detailed in
[Kuang and Tabak, 2017] provides a method of iterating through this global al-
gorithm many times such that the mapping from the initial set of points to the
final set is linear. It involves applying McCann’s Interpolant theorem, where
through iterating an optimal mapping process, the transformation moves the
points linearly.
A pseudo-code of this process of interpolating, solving the minimax optimal
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transport problem, and iterating through this process is as follows.

Algorithm 1 Optimal Transport between Points

. Step 1: Initialize intermediate sets of points
N ← number of intermediate sets of points between xi and yj
z0 ← x, Tx, zN ← y, Ty . Mix initial and final with Gaussian maps
for k = 1 : N do

zk,i ← N−k
N z0 + k

N zN
end for
while Final Map Has Not Converged do . Step 2: Forward Step

for k = 1 : N do
zk = Solve Quasi-Newtonian(zk−1,zk)

end for
end while
FirstMap = zN . Step 3: Make Global Mapping Linear
while Maps Do Not Transport Linearly do

for k = 1 : N − 1 do
zk,i ← N−k

N + k
N · FirstMap

end for
for k = 1 : N do

zk = Solve Quasi-Newtonian(zk−1,zk)
end for

end while
return zN

To solve the minimax problem between nearby sets of points, we employ a
standard Quasi Newton method described in [Essid et al., 2019], such that we
are minimizing the gradient of the Lagrangian defined by the two nearby col-
lections of points. In the pseudo-code, this refers to the function titled: Solve
Quasi-Newtonian. In addition, before beginning step 2, our α parameters were
initialized to accentuate the identity function 10, such that we could guarantee
that each iteration of gradient descent will converge. Our β parameters were
initialized to fit to the closed form optimal transport function similarly used for
Tx and Ty. Is similarly used and described in detail in both [Essid et al., 2018]
and [Kuang and Tabak, 2017]. As the transport of Gaussian is already solved,
we initialize the β parameters in this manner so that our more complex distribu-
tion has a foundational ”guess” to start off with. The final set of β parameters
can then build off of this initial guess to mold to a more complex distribution.

Using this algorithm, we can get towards a proper mapping from our initial
set of points to our final set of points.
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6 Results

After applying our algorithm to an initial data set, we can gain a mapping
from an initial distribution to a final distribution. These are a few examples of
preforming this transformation, where on the left we have the initial distribution
of points, and on the right we have the final distribution of points. In many
cases, the initial distribution has less points than the target map being pushed
to. This is simulating cases where an image from the year 2000 is mapped to
am image from 2015. An image from 2000 would have significantly less pixels
from a map from 2015. Even with this limitation, the algorithm would find a
way of mapping points optimally. In each of these examples, there are 100 less
points between the initial distribution and the final distribution.

Figure 3: A transportation from a Gaussian to another Gaussian using the
algorithm. We used 50 separate intermediate interpolated sets. The blue points
are the target distribution and the black points show a before and after mapping
onto this target.

Figure 4: A transportation from a Gaussian to an annular distribution using
the algorithm. We used 100 separate intermediate interpolated sets. The blue
coordinates are the initial distribution, the orange points are the target, and
the red points show how they have mapped.
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Figure 5: A transportation from a Gaussian to a rectangular distribution of
points. We used 300 separate intermediate interpolated sets.The blue points are
the target distribution and the black points show a before and after mapping
onto this target.

7 Discussion

Although our method works for somewhat complicated data sets, there are some
limitations to the validity of our approach. In5 for example, our points seem to
’clump together’ and find difficulty when making extreme changes in the shape
of the initial distribution and final distribution. A possible explanation for this
clumping may be from the Gaussian functions being used in the Lagrangian.
These Gaussian terms have the ability to pull or push together groups of points
during the mini max process. A future project may involve experimentation
with other function spaces for the non-linear terms of the Lagrangian. Another
possible approach to solving issues regarding clumping might be to initialize
our α’s and β’s in a less-Gaussian manner. Initializing them this way has the
disadvantage of adding bias towards fitting our distributions to Gaussian distri-
butions, even if they are more complex. As it currently stands, we initialize the
parameters to an optimal Gaussian transport, which may not be reasonable for
very complex collections of points. Another future project might explore novel
initializing procedures for our function.

Now that we have developed a system with which to map points onto each
other, the next step in developing a change detection algorithm is to identify
what it means for a collection of points to have local change. A future project
might include applying this system to a collection of weighted points represent-
ing an image, and finding a way of identifying how that image has evolved from
its initial representation to its final representation.

8 Conclusion

In this paper, we developed a strategy to optimally map weighted points to
some target set of points. Thank you to all who helped in the organization
of the 2019 AM-SURE program and my advisors, Dr. Tabak and Dr. Laefer,
in helping me complete my project. Thank you also to the National Science
Foundation for providing a portion of the funding for this project.
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