

Faster solver for multiple linear systems via Block Conjugate Gradient

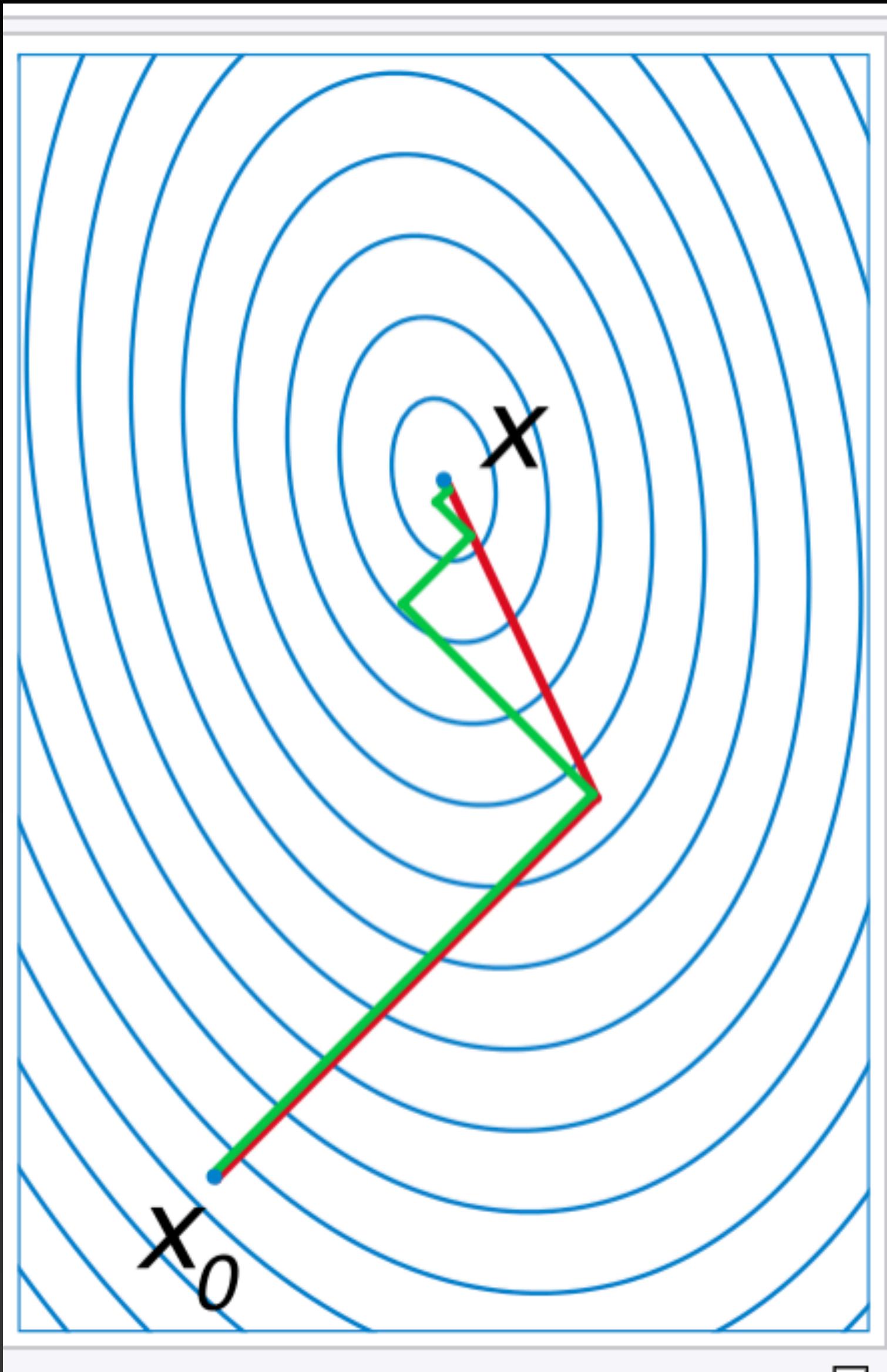
NYU's Courant Institute of Mathematical Sciences

William Lu Mentor: Florian Wechsung July-28th

Question

Find x such that $Ax = b$

- LU Decomposition: high computational cost
- Steepest Descent
- Conjugate Gradient: search directions are orthogonal



Idea: Block Conjugate Gradient

Sometimes we want to solve many problems at the same time.

i.e $AX = B, X \in R^{n \times l}, B \in R^{n \times l}$

Can we do better than just solving each of them separately? For instance, solving ℓ linear systems using Block Conjugate Gradient once instead of using CG ℓ times.

We have this hope because of the concept of memory communication cost and information sharing.

Less communication between CPU and memory; Share information between linear systems due to larger Krylov subspace.

CG & Block CG

Algorithm 1 CG

```

1: Input: Matrix  $A$ , a guessed solution  $x_0$ ,  

   a RHS  $b$ , and a threshold.  

2:  $r_0 = b - Ax_0$   

3: if  $r_0$  is smaller than the threshold, re-  

   turn  $x_0$ .  

4:  $p_0 = r_0$   

5: while true do  

6:    $\alpha_k = \frac{r_k^\top r_k}{p_k^\top A p_k}$   

7:    $x_{k+1} = x_k + \alpha_k p_k$   

8:    $r_{k+1} = r_k - \alpha_k A p_k$   

9:   if  $r_{k+1}$  is smaller than the threshold  

   then  

10:    exit the loop  

11:   else  

12:      $\beta_k = \frac{r_{k+1}^\top r_{k+1}}{r_k^\top r_k}$   

13:      $p_{k+1} = r_{k+1} + \beta_k p_k$   

14: End Repeat  

15: return  $x_{k+1}$ 

```

Algorithm 2 Block CG

```

1: Input: Matrix  $A$ , a guessed solution  

    $X_0$ , a RHS  $B$ , and a threshold.  

2:  $R_0 = B - AX_0$   

3: if  $R_0$  is smaller than the threshold, re-  

   turn  $X_0$ .  

4:  $P_0 = R_0$   

5: while true do  

6:    $\Lambda_k = (P_k^\top A P_k)^{-1} R_k^\top R_k$   

7:    $X_{k+1} = X_k + P_k \Lambda_k$   

8:    $R_{k+1} = R_k - A P_k \Lambda_k$   

9:   if  $R_{k+1}$  is smaller than the threshold  

   then  

10:    exit the loop  

11:   else  

12:      $\Phi_k = (R_k^\top R_k)^{-1} R_{k+1}^\top R_{k+1}$   

13:      $P_{k+1} = R_{k+1} + P_k \Phi_k$   

14: End Repeat  

15: return  $X_{k+1}$ 

```

- $Ax = b, AX = B$
- b, B : the RHS
- A : the positive def symmetric matrix
- r_k, R_k : k-th residual vectors
- p_k, P_k : k-th search direction
- x_k, X_k : k-th iteration
- α_k, Λ_k : k-th coefficient for step magnitude
- β_k, ϕ_k : k-th coefficient for search direction

- CG's Convergence Estimate:

- $e_k = x_k - x$
- $\kappa = \frac{\lambda_n}{\lambda_1}$, condition number
- Convergence theorem:
- $\|e_k\|_A \leq 2\left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}\right)^k \|e_0\|_A$
- $\|e_k\|_A = (e_k^T A e_k)^{\frac{1}{2}}$

- BCG's Convergence Estimate:

- $E_k = X_k - X$
- $\kappa_\ell = \frac{\lambda_n}{\lambda_\ell}$, where λ_ℓ is the ℓ th largest eigenvalue of A
- Convergence theorem:
- $\|E_k\|_A \leq 2\left(\frac{\sqrt{\kappa}_\ell - 1}{\sqrt{\kappa}_\ell + 1}\right)^k \|E_0\|_A$
- $\|E_k\|_A = (E_k^T A E_k)^{\frac{1}{2}}$

Preconditioned CG & Preconditioned Block CG

Why preconditioning? What's the preconditioner?

Algorithm 3 PCG

```

1: Input: Matrix  $A$ , a preconditioner  $M$ ,  

   a guessed solution  $x_0$ , a RHS  $b$ , and a  

   threshold.  

2:  $r_0 = b - Ax_0$   

3:  $z_0 = M^{-1}r_0$   

4: if  $r_0$  is smaller than the threshold, re-  

   turn  $x_0$ .  

5:  $p_0 = r_0$   

6: while true do  

7:    $\alpha_k = \frac{r_k^T z_k}{p_k^T A p_k}$   

8:    $x_{k+1} = x_k + \alpha_k p_k$   

9:    $r_{k+1} = r_k - \alpha_k A p_k$   

10:  if  $r_{k+1}$  is smaller than the threshold  

   then  

11:    exit the loop  

12:  else  

13:     $z_{k+1} = M^{-1}r_{k+1}$   

14:     $\beta_k = \frac{r_{k+1}^T z_{k+1}}{r_k^T z_k}$   

15:     $p_{k+1} = z_{k+1} + \beta_k p_k$   

16: End Repeat  

17: return  $x_{k+1}$ 

```

Algorithm 4 PBCG

```

1: Input: Matrix  $A$ , a preconditioner  $M$ ,  

   a guessed solution  $X_0$ , a RHS  $B$ , and a  

   threshold.  

2:  $R_0 = B - AX_0$   

3:  $Z_0 = M^{-1}R_0$   

4: if  $R_0$  is smaller than the threshold, re-  

   turn  $X_0$ .  

5:  $P_0 = R_0$   

6: while true do  

7:    $\Lambda_k = (P_k^T A P_k)^{-1} R_k^T Z_k$   

8:    $X_{k+1} = X_k + P_k \Lambda_k$   

9:    $R_{k+1} = R_k - A P_k \Lambda_k$   

10:  if  $R_{k+1}$  is smaller than the threshold  

   then  

11:    exit the loop  

12:  else  

13:     $Z_{k+1} = M^{-1}R_{k+1}$   

14:     $\Phi_k = (R_k^T Z_k)^{-1} R_{k+1}^T Z_{k+1}$   

15:     $P_{k+1} = Z_{k+1} + \Phi_k P_k$   

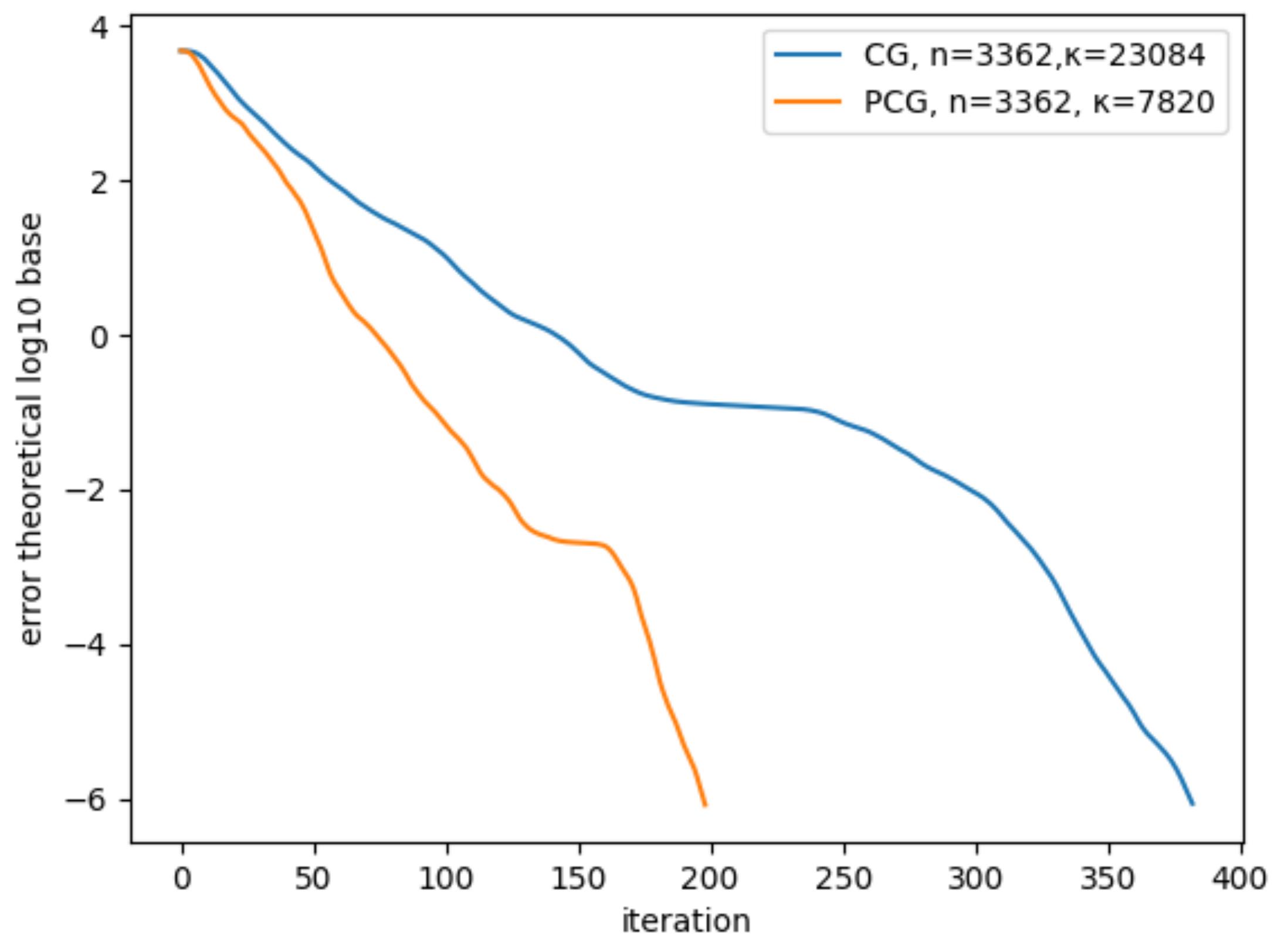
16: End Repeat  

17: return  $x_{k+1}$ 

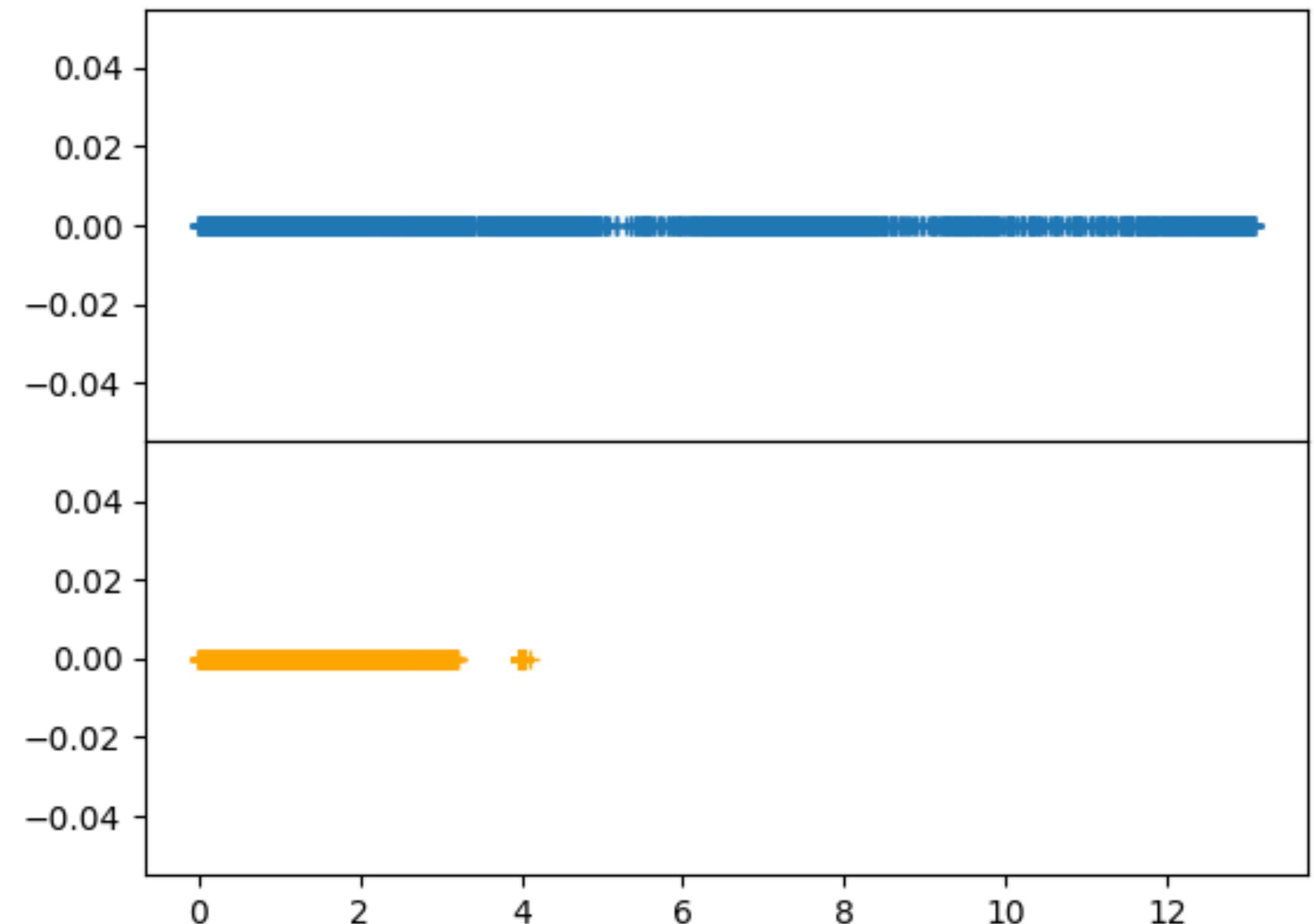
```

- $AX = B$
- M : preconditioner
- $M^{-1} \approx A^{-1}$. $M^{-1}A \approx I$.
- $M^{-1}AX = M^{-1}B$

CG & PCG

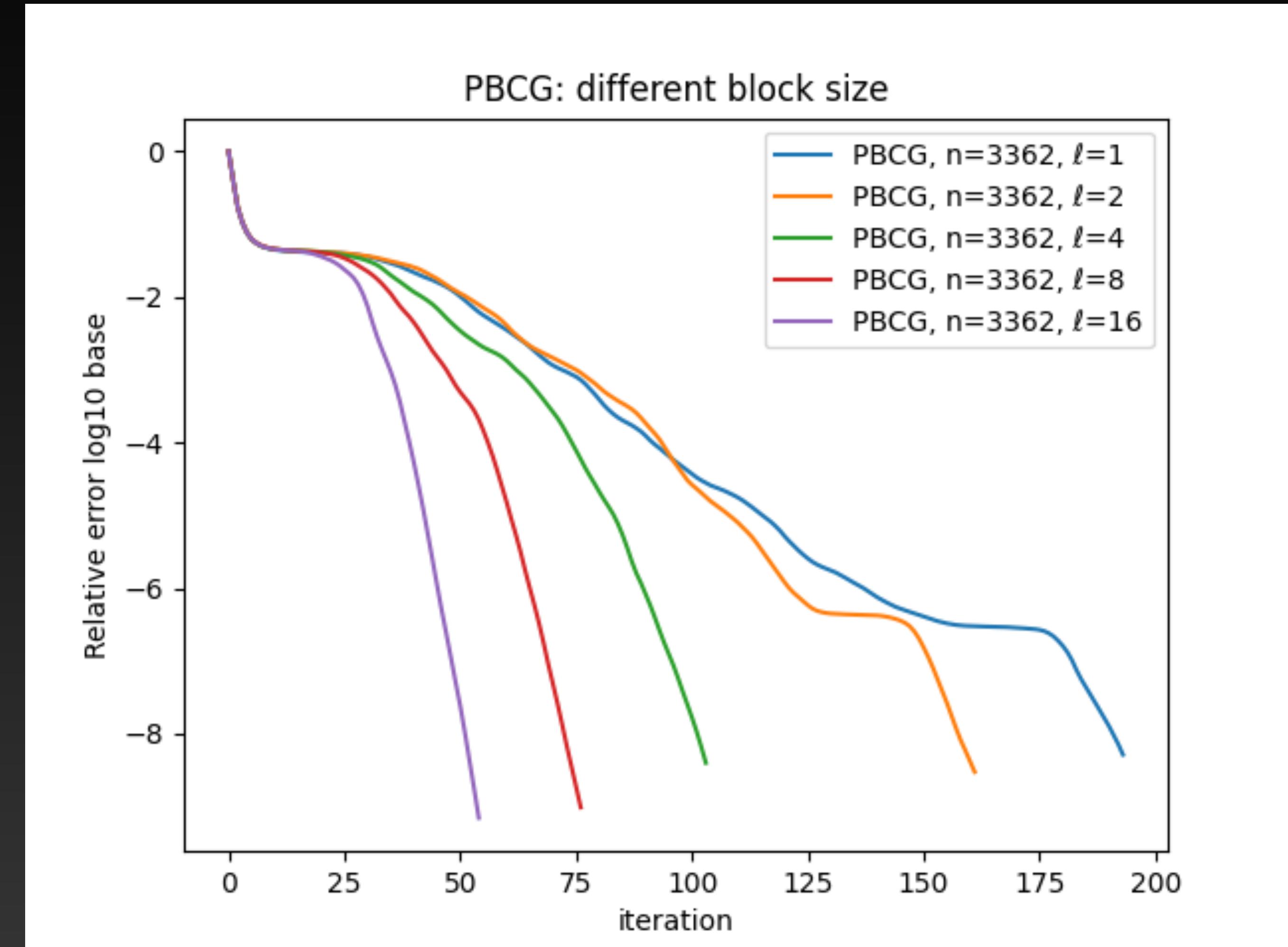


Spread of Eigenvalues



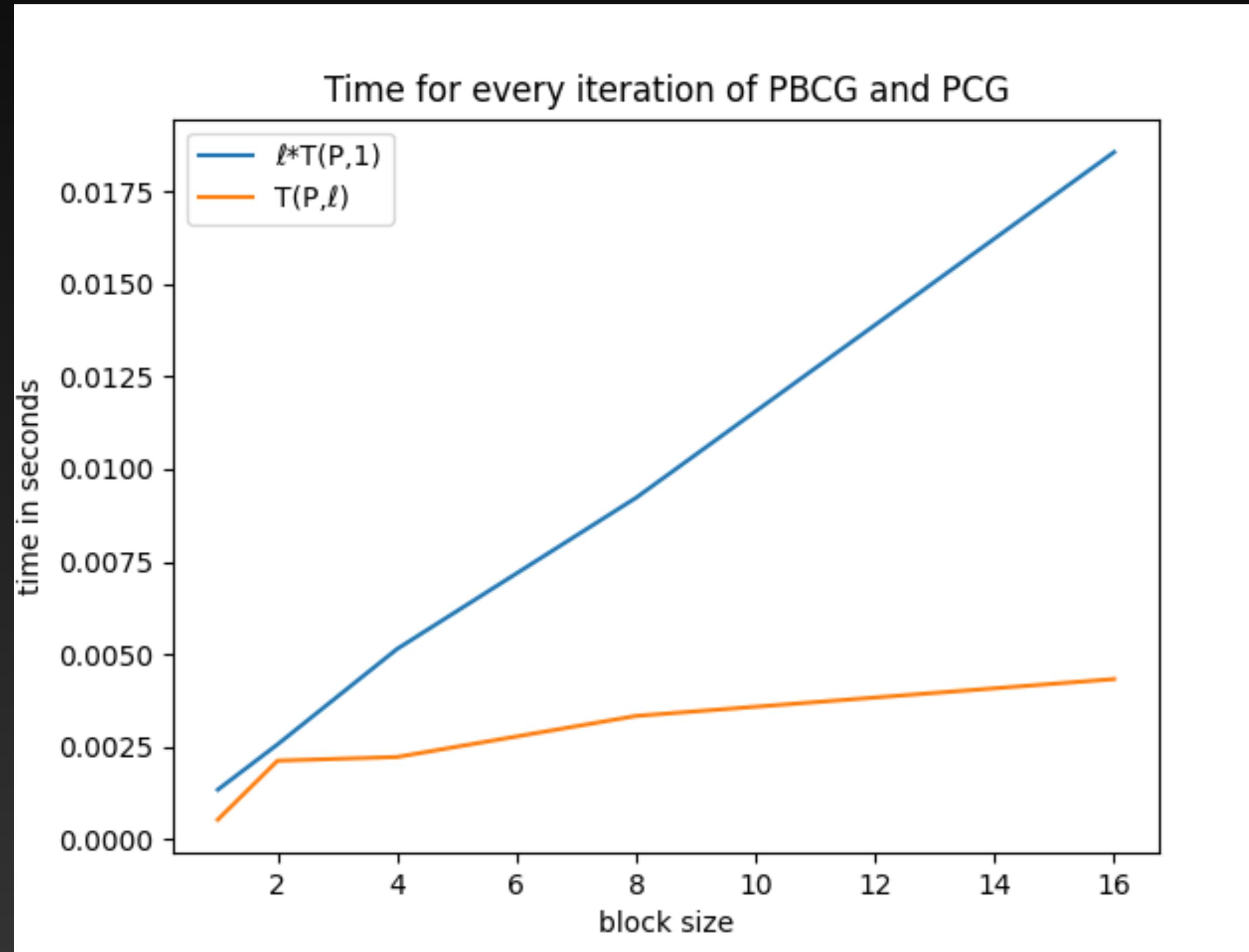
Number of iterations for Block is fewer

- matrix of size 3362
- ℓ is the block size
- $T_{\{PCG,\ell\}} = \boxed{Iter_{\{PCG,1\}}} \cdot T_{\{MatVec,1\}} \cdot \ell$
- $T_{\{PBCG,\ell\}} = \boxed{Iter_{\{PBCG,\ell\}}} \cdot T_{\{MatMat,\ell\}}$



$$A_{\{n\}}, n \in \{882, 3362, 13122\}$$

Fewer iterations. Each iteration is cheaper for large block size.

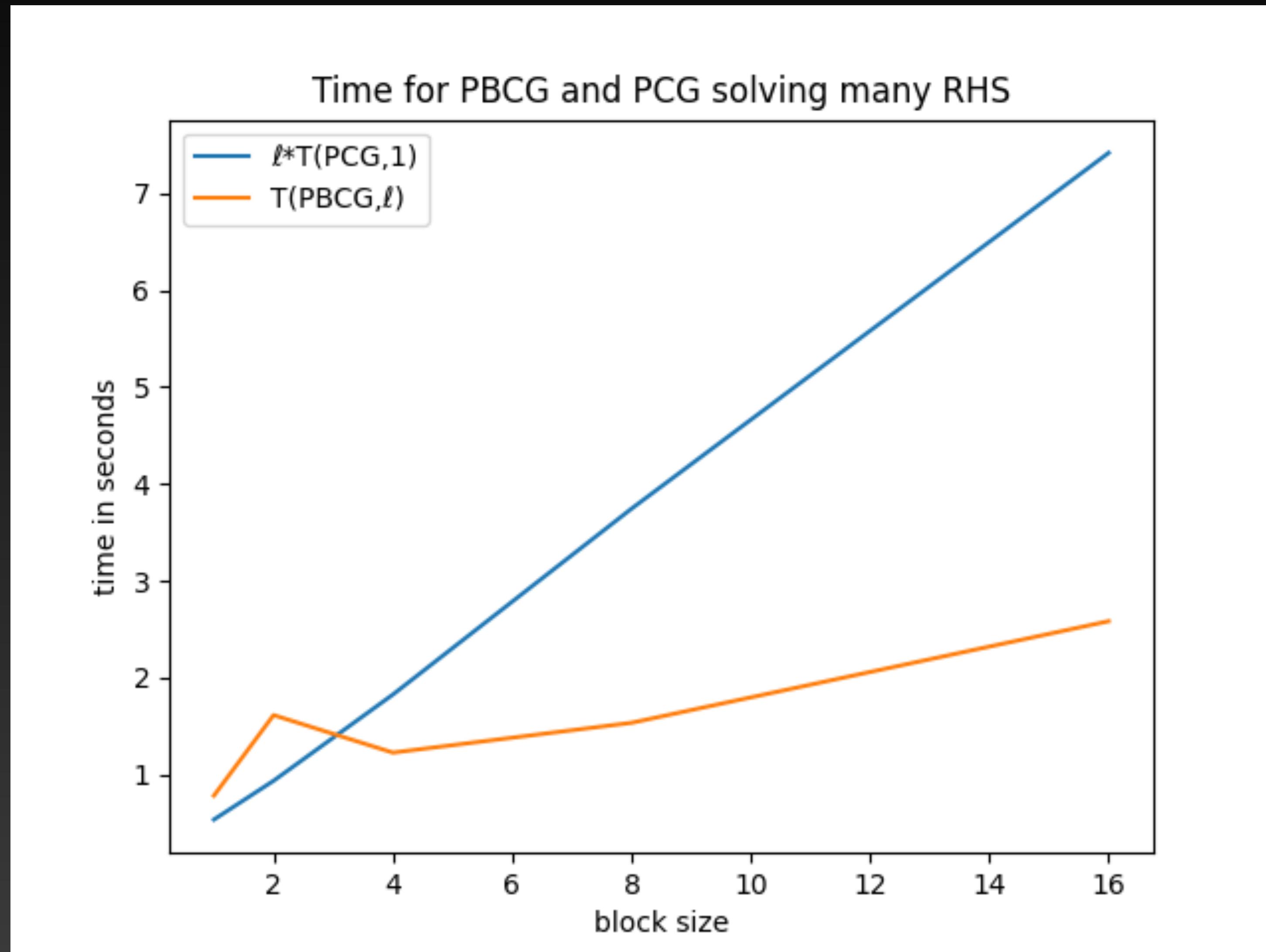


- $T_{\{PCG,\ell\}} = Iter_{\{PCG,1\}} \cdot T_{\{MatVec,1\}} \cdot \ell$
- $T_{\{PBCG,\ell\}} = Iter_{\{PBCG,\ell\}} \cdot T_{\{MatMat,\ell\}}$

$$T_{\{MatMat,\ell\}} = T_{\{A,\ell\}} + T_{\{P,\ell\}}$$

Solving ℓ linear systems using PBCG once is faster than using PCG ℓ times.

$$A_{\{n\}}, n \in \{882, 3362, \mathbf{13122}\}$$



Conclusions

- Solving ℓ linear systems using BCG or PBCG once is faster than using CG or PCG ℓ times separately. We need fewer iterations, and each iteration is cheaper for BCG when the linear system is large.
- The larger the Block size, the fewer the number of iterations.
- A well chosen preconditioner lead to fewer iterations.
- Using Pseudo Inverse can deal with singular matrices.

Accomplishment

- Fast iterative methods and concepts
- Implementation and testing of four algorithms

Future work

- Block versions of other iterative methods. e.g. GMRES.
- Use specialized routine for the sparse matrix & dense matrix product.
- Integrate solver in to PDE code and make code publicly available.

Reference

- [1] Rowan Cockett. The block conjugate gradient for multiple right hand sides in a direct current resistivity inversion. 2015.
- [2] Howard C Elman, David J Silvester, and Andrew J Wathen. Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics. *Numerical Mathematics and Scie*, 2014.
- [3] Dianne P O'Leary. “The block conjugate gradient algorithm and related methods”. In: *Linear algebra and its applications* 29 (1980), pp. 293–322.
- [4] Jonathan Richard Shewchuk et al. An introduction to the conjugate gradient method without the agonizing pain. 1994.

Questions?

Thank You