On the global minimum convergence of non-convex deterministic functions via Stochastic Approximation

Charlie Chen (mentors: Prof. Stefano Martiniani and Dr. Granming Zhang)
July 27
(Caravelli et al. 2021)
Quick demonstration of restart strategy
On Ackley function
Content

• Projective Embeddings of Dynamical Systems (PEDS)
• PEDS as particle interactions
• Inspiration for SA-PEDS
• Algorithm: SA-PEDS
• Intuitions for SA-PEDS
• Experiments
• Discussions
Projective Embeddings of Dynamical System (PEDS) (Caravelli et al. 2023)

- The optimization problem is: \(\min_X F(X) \), where \(X \in \mathbb{R}^m \).

- Extend the variable to \(M \in \mathbb{R}^{N \times m} \). Denote the column vector by \(Y_j = M[:, j] \).

- The update for \(Y^t_j \) is then

\[
Y^{t+1}_j - Y^t_j = -\gamma(\Omega \Phi(\nabla F; Y^t_1, Y^t_2, \ldots, Y^t_m) + \alpha(I - \Omega)Y^t_j),
\]

- where \(\Omega \) is a projection matrix, i.e. \(\Omega^2 = \Omega \), \(\Phi \) is called **matrix map**, \(\gamma \) is the learning rate, and \(\alpha \) is some hyper parameter.
For a particular case in PEDS

- \(Y_{j}^{t+1} - Y_{j}^{t} = -\gamma (\Omega \Phi(\nabla F; Y_{1}^{t}, Y_{2}^{t}, \ldots, Y_{m}^{t}) + \alpha (I - \Omega)Y_{j}^{t}) \), for \(j = 1, \ldots, m \)

- For a particular choice of \(\Omega \) and \(\Phi \), it can be shown that the update is equivalent to (see write-up for details)

 \[R_{i}^{t+1} - R_{i}^{t} = -\gamma \left(\frac{1}{N} \sum_{i=1}^{N} \nabla F(R_{i}^{t}) + \alpha (R_{i}^{t} - \overline{R}) \right) \), for \(i = 1, \ldots, N \),

 where \(R_{i} \) is the row vector of \(M \) and \(\overline{R} = \frac{1}{N} \sum_{i=1}^{N} R_{i} \), namely the center of mass.
Quick demonstration of PEDS
On Ackley function
Inspiration for SA-PEDS

How PEDS can be seen as a Stochastic Approximation algorithm

- $R_{i+1}^t - R_i^t = -\gamma \left(\frac{1}{N} \sum_{i=1}^{N} \nabla F(R_i^t) + \alpha (R_i^t - \bar{R}^t) \right)$

- Instead of treating R_i as deterministic, we treat it as samples from a distribution.

- For R_i be drawn from $\mathcal{N}(\theta, \sigma^2)$, the first term is the empirical approximation of $\mathbb{E}_{R \sim \mathcal{N}(\theta, \sigma)} \nabla F(R)$. Here, θ is the center of mass, similar to \bar{R}.

- The second term pulls all the particles to their center of mass, which is equivalent to decrease the variance of next samples, i.e. decrease σ.

- Stochastic Approximation Algorithm deals with $f(\theta) = \mathbb{E}_\xi F(\theta, \xi)$.

SA-PEDS
Stochastic Approximation Projective Embedding of Dynamical Systems

- Target: \(\min_{\theta, \sigma} \mathbb{E}F(R) \), subject to \(R \sim \mathcal{N}(\theta, \sigma) \).
- Given \(\theta_0, \sigma_0, \gamma, \eta \)
- For \(t = 0, 1, 2, \ldots, T_{\text{max}} \) or stopping condition is met
 - Draw \(N \) samples \(R^t_1, \ldots, R^t_N \) from \(\mathcal{N}(\theta, \sigma^2) \).
 - Compute the gradient \(g_t = \frac{1}{N} \sum_{i=1}^{N} \nabla F(R^t_i) \) and update \(\theta_{t+1} = \text{optim}(\theta_t, g_t, \gamma) \).
 - Shrink \(\sigma_{t+1} = \max(\sigma_t - \alpha, 0) \), where \(\alpha \) is some fixed parameter
- The last \(\theta \) is our minimizer.
Quick demonstration of SA-PEDS
On Ackley function
Intuitions for SA-PEDS

Why this methods can work?

• For \(R \sim \mathcal{N}(\theta, \sigma) \), we have

\[
\mathbb{E} \nabla F(R) = \int \nabla F(R) \mathcal{N}(R; \theta, \sigma^2 I) dR = \int \nabla F(R) \rho(\theta - R) dX = \nabla F^* \rho(\theta),
\]

• where \(\rho(X) \approx e^{-\|X\|^2} \) (up to constants)

• This is as smooth as the Gaussian density function

• This is also called Randomized Smoothing, in the context of non-smooth Stochastic Gradient Descent (Duchi et al. 2012).
Experiments

- Test function: Ackley function
- Approaches:
 - Restart: take different initial values and optimize.
 - PEDS: the original PEDS algorithm
 - SA-PEDS: the algorithm we proposed
- Interesting variables:
 - Success rate: if any particle finds the global min
 - Convergence time: how long does the convergence take

Code: https://github.com/charliezchen/SA-PEDS
Experiments ($m=2, N=20$)

- Restart
- PEDS
- SA-PEDS
Experiments (m=10, N=20)
Only showing first two coordinates, instead of all 10 coordinates.
Experiments Results

The success rate on increasing N (x-axis) and m (y-axis)
Experiments Results
How expensive is SA-PEDS?

Comparison of success rate and average time for SA-PEDS (m=128)
Discussions

• Inspired by PEDS, we proposed SA-PEDS, which achieves successful convergence behavior on the Ackley function.

• SA-PEDS is for a particular case of PEDS. It’s not a strict generalization.

• If the signal is in high-frequency (e.g. Rosenbrock function), PEDS and SA-PEDS don’t work (preliminary results).

• PEDS and SA-PEDS are sensitive on the value of α (decreasing rate of variance/the attraction force).

• Study this algorithm using particle theory and send N to infinity.
Acknowledgement
This research would not be possible without the support of

- Courant Institute of Mathematical Science
 - For organizing the events
- Simons Center for Computational Physical Chemistry
 - For funding
- NYU High Performance Computing Greene
 - For computation resources
Reference

Appendix A
The choice of optimizer

- For SA-PEDS, the variance of gradient will cause large wiggling effect for Vanilla Gradient Descent. Using Adam solves this problem.

- For PEDS with large m, choosing small α and using Adam improves the result.

SA-PEDS with VGD PEDS with Adam
Appendix B
Accelerating SA-PEDS by importance sampling

• By importance sampling, the expectation of gradient can be evaluated as:

$$\mathbb{E} \nabla F(R) = \left(\nabla F(R_1) \quad \nabla F(R_2) \quad \ldots \quad \nabla F(R_K) \right)^T \left(\mathcal{N}(R_1; \theta, \sigma) \quad \mathcal{N}(R_2; \theta, \sigma) \quad \ldots \quad \mathcal{N}(R_K; \theta, \sigma) \right)$$

• After picking a set \mathcal{S} of points, we can calculate the probability-weighted sum for the expectation. When θ changes a little bit, we can just still get a fairly good approximation by shifting the probability-weight matrix and adding a few new points to \mathcal{S}.

• It’s like sliding window / convolution.
Appendix C
Some remarks for PEDS

- $Y_{j}^{t+1} - Y_{j}^{t} = -\gamma(\Omega \Phi(\nabla F; Y_{1}^{t}, Y_{2}^{t}, \ldots, Y_{m}^{t}) + \alpha(I - \Omega)Y_{j}^{t}), j = 1, \ldots, m$

- The original problem in m dimension is embedded into an Nm dimensional space.

- The gradient is projected onto the column space of Ω and the second term, called the **decay function**, ensures that Y_{i} will also be on the column space of Ω in the long run.

- It is proved that this keeps local minimum and saddle points and it transforms local maximum to be saddle points (Caravelli et al. 2023).
Appendix C
One particular case for PEDS

• $Y_{j+1}^t - Y_j^t = -\gamma \left(\Omega \Phi(\nabla F; Y_1^t, Y_2^t, \ldots, Y_m^t) + \alpha(I - \Omega)Y_j^t \right)$

• where $\Phi(\nabla F; Y_1, Y_2, \ldots Y_m)_i = \nabla F \left((m_{i,1}, m_{i,2}, \ldots m_{i,m})^T \right) = \nabla F(R_i)$,

• $\Omega = \Omega_1 = \frac{1}{N} \begin{pmatrix} 1 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \cdots & 1 \end{pmatrix}$.

\[
\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{pmatrix} \rightarrow \begin{pmatrix} x_{1,1} & x_{1,2} & \cdots & x_{1,m} \\ x_{2,1} & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ x_{N,1} & \cdots & \cdots & x_{N,m} \end{pmatrix} R_N
\]