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Interesting things happen slowly.

Chemistry is dominated by slow processes.
We need an algorithm to identify these slow processes.

Figure: Interesting things happen slowly (Ben-Nissan & Simon, 2011)
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Interesting things happen slowly

We want to identify the slow
dynamics of a Markov process
(Xt)t≥0 ∈ Rd .

1. Diffusion process in Rd

dXt = µ (Xt) dt +σ (Xt) dW

2. Discretization of a diffusion

Xt+h = Xt +µ (Xt) h+σ (Xt)
√
hZt

3. MCMC algorithm to sample π

Xt+1 =

{
Xt + Zt , w.p.π(Xt+1)

π(Xt)
∧ 1

Xt , otherwise

Figure: Molecular dynamics model for
gating protein in the lipid bilayer (Lee
et al., 2018)
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3 New results: mathematical analysis of VAC error
Convergence proof for VAC eigenfunctions.
Error bounds for VAC
Numerical examples
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Maximizing autocorrelations (Math 1/3)

Let’s look for the functions of Xt that decorrelate most slowly.

• Assume Xt is ergodic and reversible with respect to µ:

Eµ [f (X0) g (Xt)] = Eµ [f (Xt) g (X0)] , ∀f , g ∈ L2 (µ)

• Search for mean-zero functions η ∈ L2 (µ) that maximize

corrµ [η (X0) , η (Xτ )] =
Eµ [η (X0) η (Xτ )]

Eµ |η (X0)|2
.
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Operator theory (Math 2/3)

Define the transition operator Tτ : L2 (µ)→ L2 (µ) as

Tτ [f ] (x) = E [ f (Xτ )|X0 = x ] .

=⇒ Tτ is a self-adjoint operator in L2 (µ), because

〈f ,Tτg〉µ = Eµ [f (X0) g (Xt)] = Eµ [f (Xτ ) g (X0)] = 〈Tτ f , g〉µ .

=⇒ Under some assumptions (including compactness), Tt has a
spectral decomposition

Tτ =
∞∑
i=1

e−σiτηi 〈ηi , ·〉

where 0 = σ1 < σ2 < σ3 < · · · and where η1, η2, . . . are orthonormal
eigenfunctions. The first eigenfunction is the trivial eigenfunction η1 ≡ 1.
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Courant-Fischer min-max principle (Math 3/3)

η1, . . . , ηk span all the most slowly decorrelating functions of the system.

• If η belongs to the linear span of η2, . . . , ηk , then

corrµ [η (X0) , η (Xτ )] =
〈η,Tτη〉µ
〈η, η〉µ

≥ e−σkτ .

• If u is orthogonal to ηi for 1 ≤ i ≤ k then,

corrµ [u (X0) , u (Xτ )] =
〈u,Tτu〉µ
〈u, u〉µ

≤ e−σk+1τ .
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VAC (1/3)

The variational approach to conformation dynamics (Noé & Nüske, 2013)
approximates eigenvalues and eigenfunctions of Tτ using a set of basis
functions φ1, φ2, . . . , φn.

Using VAC in practice

simulation: complete lots of short, independent simulations
(∼ 100− 1000) or a few longer simulations
(∼ 1− 10).

preparation: choose a set of basis functions (∼ 10− 1000) and
estimate expectations Eµ [φi (X0)φj (Xτ )].

spectral estimation: apply VAC to estimate eigenvalues and
eigenfunctions.

post-processing: look at top eigenfunctions (∼ 1− 10) to find
meaningful and interpretable patterns.
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VAC (2/3)

VAC algorithm at lag time τ .

1. Form matrix Ĉ (0) with entries Ĉij (0) ≈ Eµ [φi (X0)φj (X0)].

2. Form matrix Ĉ (τ) with entries Ĉij (τ) ≈ Eµ [φi (X0)φj (Xτ )].

3. Solve eigenvalue problem λ̂τi v̂
i (τ) = Ĉ (0)−1 Ĉ (τ) v̂ i (τ).

4. Return estimated eigenvalues λ̂τi and eigenfunctions
γ̂τi =

∑
j v̂

i
j (τ)φj .

τ = lag time parameter

Examples of VAC include

1. Markov state models (MSMs): basis functions are indicator
functions on disjoint sets.

2. Time-lagged independent component analysis (TICA): basis
functions are the coordinate axes.
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3. Solve eigenvalue problem λ̂τi v̂
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3. Solve eigenvalue problem λ̂τi v̂
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VAC (3/3)

Figure: Schematic of how VAC is used in practice (Noé and Clementi, 2018)
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Applications in chemistry

Figure: Lee et al. (2018) use VAC to understand protein dynamics.
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Applications in chemistry

Figure: Chong & Ham (2018) use VAC to identify folded and unfolded states.
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Problems with VAC

Problems.

1. No one has proved convergence of VAC eigenfunctions.

2. No one knows how to choose a lag time.

3. How do we know if VAC is accurate?
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No one has proved convergence of VAC eigenfunctions.

Djurdjevac, Sarich & Schütte (2012) proved convergence of eigenvalues.

Theorem (eigenvalue convergence)

Assume Ĉij (τ) ≈ Eµ [φi (X0)φj (Xτ )] terms are evaluated perfectly, and
set Φ = span1≤i≤n φi . Then, VAC eigenvalues converge

λ̂τk → e−σkτ

provided that projΦ ηi → ηi for each 1 ≤ i ≤ k.

• What about convergence of VAC eigenfunctions?

• What if matrix entries Ĉij (τ) ≈ Eµ [φi (X0)φj (Xτ )] are evaluated
imperfectly because of the finite data set?
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No one knows how to choose a lag time.

A reasonable setting of the lag-time parameter is critically im-
portant... (Naritomi & Fuchigami, 2011)

Figure: VAC results were sensitive to
lag time, issue was never resolved

Figure: VAC user unsure how to select
a lag time
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How do we know if VAC is accurate?

Figure: Sidsky et al. (2019) identify 7 nontrivial eigenfunctions for trp-cage
protein – are all 7 eigenfunctions accurate?
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Goals of our work

Figure: Molecular dynamics model for
gating protein in the lipid bilayer (Lee
et al., 2018)

Goal 1: prove convergence of VAC
eigenfunctions

Goal 2: determine how error
depends on lag time

Goal 3: provide examples
assessing accuracy of VAC
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Proving convergence (1/3)

1. Colloquially, VAC is an algorithm for estimating eigenfunctions.
Really, VAC estimates eigenspaces and other invariant subspaces.

span
j≤i≤k

γ̂τi ≈ span
j≤i≤k

ηi ,

2. We need a distance between finite-dimensional subspaces of L2 (µ).

3. Define the projection distance

dF (U ,W) =
∥∥proj

[
W⊥

]
proj [U ]

∥∥
F

where W⊥ is the orthogonal complement of W and ‖·‖F is the
Hilbert-Schmidt/Frobenius norm.

4. The definition also works if dimU < dimW ≤∞. Then, dF (U ,W)
measures the distance between U and the nearest dimU-dimensional
subspace of W.
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Proving convergence (2/3)

By the ergodic theorem,

Ĉij (τ)→ E [φi (X0)φj (Xτ )] .

By continuity, eigenspaces converge (assuming eigenvalues are simple).
It suffices to consider an idealized VAC algorithm with no sampling error.

Idealized VAC algorithm at lag time τ .

1. Form matrix C (0) with entries Cij (0) = Eµ [φi (X0)φj (X0)].
2. Form matrix C (τ) with entries Cij (τ) = Eµ [φi (X0)φj (Xτ )].

3. Solve eigenvalue problem λτi v
i (τ) = C (0)−1 C (τ) v i (τ).

4. Return idealized eigenvalues λτi and idealized eigenfunctions
γτi =

∑
j v

i
j (τ)φj .

Idealized VAC involves C (τ), λτi , and γτi .

VAC involves Ĉ (τ), λ̂τi , and γ̂τi .
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Proving convergence (3/3)

1. In Rayleigh-Ritz method, eigenvalues and eigenfunctions of an
operator A are estimated using eigenvalues and eigenfunctions of
proj [U ] A|U for a subspace U of trial functions.

2. Idealized VAC is Rayleigh-Ritz with A = Tτ .

3. We can apply convergence results for Rayleigh-Ritz (Knyazev, 1997).

Theorem (Rayleigh-Ritz bound)

1. Idealized VAC eigenfunctions converge

γτk → ηk as proj
Φ
ηi → ηi for 1 ≤ i ≤ k.

2. Idealized VAC error is bounded by

1 ≤
d2

F

(
span1≤i≤k γ

τ
i , span1≤i≤k ηi

)
d2

F

(
span1≤i≤k ηi ,Φ

) ≤ 1 +

∥∥proj
[
Φ⊥
]
Tτ proj [Φ]

∥∥2

2∣∣e−σkτ − λτk+1

∣∣2 .
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Limitations of Rayleigh-Ritz bound

Rayleigh-Ritz bound explains how error depends on the basis set Φ.

Rayleigh-Ritz bound doesn’t explain how error depends on the lag time τ .

Figure: The Rayleigh-Ritz bound asymptotes to infinity at long lag times (left).
The true error decreases and then stabilizes at long lag times (right).

To understand lag time, we need to prove a new error bound.
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Analyzing lag time

Figure: Molecular dynamics model for
gating protein in the lipid bilayer (Lee
et al., 2018)

Goal 1: prove convergence of VAC
eigenfunctions

;

Goal 2: determine how error
depends on lag time

Goal 3: provide examples assessing
accuracy of VAC

;
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Analyzing lag time

Decompose the error into two parts

dF

(
span

1≤i≤k
γ̂τi , span

1≤i≤k
ηi

)
︸ ︷︷ ︸

total error

≤ dF

(
span

1≤i≤k
γτi , span

1≤i≤k
ηi

)
︸ ︷︷ ︸

approximation error

+ dF

(
span

1≤i≤k
γ̂τi , span

1≤i≤k
γi

)
︸ ︷︷ ︸

estimation error

.

• Approximation error = difference between idealized VAC and true
eigenfunctions ηi .

• Estimation error = difference between idealized VAC and VAC

• VAC is error-prone at short lag times due to approximation error and
at long lag times due to estimation error
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Approximation error (1/2)

New result: idealized VAC eigenfunctions converge at long lag times.

Theorem (The τ →∞ limit)

1. Idealized VAC eigenfunctions converge

span
1≤i≤k

γτi → proj [Φ] span
1≤i≤k

ηi as τ →∞.

2. The rate of convergence is exponentially fast, asymptotically
proportional to λτk+1/λ

τ
k .

3. Lastly, approximation error is bounded by

1 ≤
d2

F

(
span1≤i≤k γ

τ
i , span1≤i≤k ηi

)
d2

F

(
span1≤i≤k ηi ,Φ

) ≤ 1 +

∣∣∣∣ e−σk+1τ/2

λτk − e−σk+1τ

∣∣∣∣2 ,
provided that λτk > e−σk+1τ .
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Approximation error (2/2)

Figure: The Rayleigh-Ritz bound asymptotes to infinity at long lag times (left).
The true error decreases and then stabilizes at long lag times (right). Our
improved bound becomes sharp at long lag times (center).
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Estimation error (1/2)

New result: there is a precise asymptotic formula for the estimation error.

Theorem (Asymptotic formula)

Estimation error is described by

dF

(
span

1≤i≤k
γ̂τi , span

1≤i≤k
γτi

)2

=
n∑

i=k+1

k∑
j=1

∣∣∣∣∣∣
v i (τ)T

[
Ĉ (τ)− λτj Ĉ (0)

]
v j (τ)

λτi − λτj

∣∣∣∣∣∣
2

(1 + o (1))

in the limit as Ĉ (τ)→ C (τ) and Ĉ (0)→ C (0).

Condition number = maximum change in VAC eigenfunctions as Ĉ (0)

and Ĉ (τ) become corrupted by small errors =
(
λτk − λτk+1

)−1
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and Ĉ (τ) become corrupted by small errors =
(
λτk − λτk+1

)−1



We need an algorithm to identify slow dynamics How can we estimate slow dynamics? New results: mathematical analysis of VAC error Conclusions

Estimation error (2/2)

Step 1: using trajectory data, estimate statistical error in Ĉ (0) and Ĉ (τ).

Step 2: using the asymptotic formula, approximate the mean-squared
estimation error.

Figure: For a range of trajectory lengths T , the asymptotic formula gives
accurate predictions for the the mean squared estimation error.
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Assessing accuracy

Figure: Molecular dynamics model for
gating protein in the lipid bilayer (Lee
et al., 2018)

Goal 1: prove convergence of VAC
eigenfunctions

Goal 2: determine how error de-
pends on lag time

;

Goal 3: provide examples
assessing accuracy of VAC
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Assessing accuracy - dependence on lag time

We’ve been testing VAC on examples.

Consider the Ornstein-Uhlenbeck (OU) process dX = −X dt + dW .

Trial 1. Basis = 20 indicator functions, trajectory length = 10 000

Trial 2. Basis = 50 indicator functions, trajectory length = 500

Figure: VAC eigenvalues for the OU process
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Assessing accuracy - dependence on condition number

Consider the diffusion process

dX = −1

2
σσT∇U(X ) dt +σ dW

where

U(x1, x2) = 4x4
1 − 8x2

1 + x1 + 0.5x2
2 ,

σ =

(
2 0

−1
√

3

)
.

Let’s apply VAC with
basis =

{
1, x1, x2, x

2
1 , x1x2, x

2
2

}
,

trajectory length = 500.

Figure: VAC eigenvalues for the double well
potential
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Assessing accuracy - dependence on condition number

Figure: Subspace {η1, η2},
condition number ≈ 2.0

Figure: Subspace {η1, η2, η3},
condition number ≈ 9.5
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Conclusions

Figure: Molecular dynamics model
for gating protein in the lipid
bilayer (Lee et al., 2018)

1. We proved convergence of VAC
eigenfunctions.

2. We determined how error depends
on lag time.

3. We provided diagnostic tools to
gauge error.

• VAC eigenvalue ratio
• condition number
• asymptotic estimation error
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