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We need an algorithm to identify slow dynamics

@00

Interesting things happen slowly.

Chemistry is dominated by slow processes.
We need an algorithm to identify these slow processes.
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Figure: Interesting things happen slowly (Ben-Nissan & Simon, 2011)



We need an algorithm to identify slow dynamics
oeo

Interesting things happen slowly

We want to identify the slow
dynamics of a Markov process
(Xe)yo € RY.

Figure: Molecular dynamics model for
gating protein in the lipid bilayer (Lee
et al., 2018)



We need an algorithm to identify slow dynamics
oeo

Interesting things happen slowly

We want to identify the slow
dynamics of a Markov process
(Xe)yo € RY.

1. Diffusion process in R?
dX: = p (Xe) dt +o (X¢) dW
2. Discretization of a diffusion
Xegn = Xe+ 1 (Xe) h+0 (X:) VhZ,

3. MCMC algorithm to sample =

Xe+ Zs, wp. 2 A1
Xip1 = (%)
X, otherwise

Figure: Molecular dynamics model for
gating protein in the lipid bilayer (Lee
et al., 2018)
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Maximizing autocorrelations (Math 1/3)

Let’s look for the functions of X; that decorrelate most slowly.
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Maximizing autocorrelations (Math 1/3)

Let’s look for the functions of X; that decorrelate most slowly.

e Assume X; is ergodic and reversible with respect to u:

E. [f (Xo) g (Xe)] = B, [f (Xe) g (X0)] vf.g € L (n)
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We need an algorithm to identify slow dynamics
@00

Maximizing autocorrelations (Math 1/3)

Let’s look for the functions of X; that decorrelate most slowly.

e Assume X; is ergodic and reversible with respect to u:

B If (X0) g (X)] = Eu[F(X)g ()], VFg e L2 (n)
e Search for mean-zero functions n € L? (1) that maximize

B o) n (X))

corr, 1 (X0) .1 (X)) = =2 n (Xo)|?
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We need an algorithm to identify slow dynamics
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Operator theory (Math 2/3)

Define the transition operator T,: L2 (1) — L2 (1) as

T, [F1(x) = E[f (X,)| Xo = x].
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Operator theory (Math 2/3)

Define the transition operator T,: L2 (1) — L2 (1) as
T [fl1(x) = E[f (X.)| Xo = x].
= T, is a self-adjoint operator in L% (u), because

(F.To8), = Ed [F (X0) & (Xo)] = B [F (X-) g (X0)] = (T-Fg),,.
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Operator theory (Math 2/3)

Define the transition operator T,: L2 (1) — L2 (1) as
T-[f]1(x) = E[f (X7)[ Xo = x].
= T, is a self-adjoint operator in L% (u), because
(£, Tog), = Eulf (X0) g (X)) = Euf (X:) g (X)) = (T+ 1,2,

= Under some assumptions (including compactness), T; has a
spectral decomposition

[eS)
§ e 7717'
i=1

where 0 = 01 < 02 < 03 < --- and where 71,75, ... are orthonormal
eigenfunctions. The first eigenfunction is the trivial eigenfunction n; = 1.
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Courant-Fischer min-max principle (Math 3/3)
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Courant-Fischer min-max principle (Math 3/3)

M, ---,7Nk span all the most slowly decorrelating functions of the system.
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We need an algorithm to identify slow dynamics
[ele] J

Courant-Fischer min-max principle (Math 3/3)

M, ---,7Nk span all the most slowly decorrelating functions of the system.
e If i belongs to the linear span of 75, ..., 7, then

(n, Trm)
corry [11(Xo) ;1 (Xr)] = ———F > e 7.
! ’ (n,m),,
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We need an algorithm to identify slow dynamics
[ele] J

Courant-Fischer min-max principle (Math 3/3)

M, ---,7Nk span all the most slowly decorrelating functions of the system.
e If i belongs to the linear span of 75, ..., 7, then

(. Trmh, J—

corr,, [ (Xo) ,n (Xr)] = W 2

e If uis orthogonal to 7; for 1 < i < k then,

(u, Tru)
X X)) = ——+F5 <e 7T,
corry, [u(Xo), u (X)) m U>M <e
fsec psec nsec usec msec sec min

Atomic
vibrations _:
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How can we estimate slow dynamics?
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VAC (1/3)

The variational approach to conformation dynamics (Noé & Niiske, 2013)
approximates eigenvalues and eigenfunctions of T, using a set of basis

functions ¢1, ¢2, ..., dn.
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VAC (1/3)

The variational approach to conformation dynamics (Noé & Niiske, 2013)
approximates eigenvalues and eigenfunctions of T, using a set of basis

functions ¢1, ¢2, ..., dn.

Using VAC in practice
simulation: complete lots of short, independent simulations
(~ 100 — 1000) or a few longer simulations
(~1-10).
preparation: choose a set of basis functions (~ 10 — 1000) and
estimate expectations E,, [¢; (Xo) ¢ (X7)]-

spectral estimation: apply VAC to estimate eigenvalues and
eigenfunctions.

post-processing: look at top eigenfunctions (~ 1 — 10) to find
meaningful and interpretable patterns.
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VAC (2/3)

VAC algorithm at lag time 7.

. Form matrix C (0) with entries C;; (0) = E,, [¢; (X0) #; (X0)]-
)

1

2 0

3. Solve eigenvalue problem :\,7\7"A(T) =CO) " E(r)0i(r
4. Return estimated eigenvalues AT and eigenfunctions

A = Zj ‘711(7)(?51
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VAC (2/3)

VAC algorithm at lag time 7.

. Form matrix C (0) with entries C;; (0) = E,, [¢; (X0) #; (X0)]-
)

1

2 0

3. Solve eigenvalue problem :\,7\7"A(T) =CO) " E(r)0i(r
4. Return estimated eigenvalues AT and eigenfunctions

A = Zj ‘711(7)(?51

7 = lag time parameter
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VAC (2/3)

VAC algorithm at lag time 7.

Form matrix C(O) with entries CU( ) = E, [9i (X0) ¢j (Xo)]-
Form matrix € () with entries C; () ~ E [(j), (Xo) ¢j (X))
Solve eigenvalue problem A707 (1) = € (0) ™' € (7) ¥ (7')
Return estimated eigenvalues :\,T and eigenfunctions

AT =39 (1) ¢).

52 @IS L=

7 = lag time parameter

Examples of VAC include
1. Markov state models (MSMs): basis functions are indicator
functions on disjoint sets.

2. Time-lagged independent component analysis (TICA): basis
functions are the coordinate axes.
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VAC (3/3)

MD trajectory

Apply basis set

Expand

Data matrix X

Estimate

Solve

Eigenfunction matrix

Covariance matrices
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kit i
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Current Opinion in Structural Biology

Figure: Schematic of how VAC is used in practice (Noé and Clementi, 2018)
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Applications in chemistry

Sequence of mechanistic events

T333-Y439 breaks TMB3/TM6 move apart

Lipid is released
to the EC leaflet
Microstates 5, 6

Lipid moves to the EC side and flips;
still engaged with the protein
Microstate 4

Lipid diffuses towards the
central region of the groove
Microstates 1,2, 3

Figure: Lee et al. (2018) use VAC to understand protein dynamics.
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Applications in chemistry

a free energy map projected b k-means clustering
onto the first two TICA components into 500 microstates
o
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Figure: Chong & Ham (2018) use VAC to identify folded and unfolded states.
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Problems with VAC

Problems.
1. No one has proved convergence of VAC eigenfunctions.
2. No one knows how to choose a lag time.

3. How do we know if VAC is accurate?
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No one has proved convergence of VAC eigenfunctions.

Djurdjevac, Sarich & Schiitte (2012) proved convergence of eigenvalues.

Theorem (eigenvalue convergence)

Assume Cj (7) ~ E,, [#: (Xo) ¢j (X,)] terms are evaluated perfectly, and
set ® = spany<;<, ¢;. Then, VAC eigenvalues converge

AT o e

provided that proje n;i — n; for each 1 < i < k.




How can we estimate slow dynamics?
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No one has proved convergence of VAC eigenfunctions.

Djurdjevac, Sarich & Schiitte (2012) proved convergence of eigenvalues.

Theorem (eigenvalue convergence)

Assume Cj (7) ~ E,, [#: (Xo) ¢j (X,)] terms are evaluated perfectly, and
set ® = spany<;<, ¢;. Then, VAC eigenvalues converge

AT o e

provided that proje n;i — n; for each 1 < i < k.

e What about convergence of VAC eigenfunctions?

o What if matrix entries C; (1) = E,, [¢; (Xo) ¢ (X, )] are evaluated
imperfectly because of the finite data set?
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No one knows how to choose a lag time.

A reasonable setting of the lag-time parameter is critically im-
portant... (Naritomi & Fuchigami, 2011)

How to choose the TICA lag tlme7 #230 TICA and MSM Lag time Enquiry #1

on Mar 11 -2 comments

S yongwangceH commented on jan 28 2017 ‘@ unell commented on M 11 o
[
found thefnal MM i verydependent o the choice o the TICAlagtime. Inthe tutorials, noiced Dear UseRs
e 20 orboth binding and flding cass. Anyreason o chose this alu? Any comments are
am w0 tis Markov State Metho meth s wel s the sofare o leas excuse me orsome

Both papers that came out introducing TICA said it doesn't affect the results much. From our experience ask this because | notice tha i the example tutorial at htt
and apparently yours it does seem to affect them. | have not seen any comment on it from Frank's group.

rmo @gph82 has some new ideas on it? This is more a discussion than an issue
keep talking here.

simple questions.

For the lag time parameters for both e.g. pyemma.coordinates ica() andd
pyemma msmbayesian_markov_model can | choose these lag times independently from each other or

there is some restrictions?

he lag time for tia has been first chosen
as first set to the same value as
i order to choose a proper number of

states. Later, the chosen lag time for ITS convergence run to check f this lag

time is good enough for msm - and itis.

Figure: VAC results were sensitive to Figure: VAC user unsure how to select
lag time, issue was never resolved a lag time
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How do we know if VAC is accurate?
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Figure: Sidsky et al. (2019) identify 7 nontrivial eigenfunctions for trp-cage
protein — are all 7 eigenfunctions accurate?



New results: mathematical analysis of VAC error
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Goals of our work

Goal 1: prove convergence of VAC
eigenfunctions

Goal 2: determine how error
depends on lag time

Goal 3: provide examples
assessing accuracy of VAC

Figure: Molecular dynamics model for
gating protein in the lipid bilayer (Lee
et al., 2018)
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Proving convergence (1/3)

1. Colloquially, VAC is an algorithm for estimating eigenfunctions.
Really, VAC estimates eigenspaces and other invariant subspaces.

o
Span Yi =~ span 7;,
Jj<i<k j<i<k
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2. We need a distance between finite-dimensional subspaces of L2 ().
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Proving convergence (1/3)

1. Colloquially, VAC is an algorithm for estimating eigenfunctions.
Really, VAC estimates eigenspaces and other invariant subspaces.

o
Span Yi =~ span 7;,
Jj<i<k j<i<k

2. We need a distance between finite-dimensional subspaces of L2 ().

3. Define the projection distance
dr (U, W) = ||proj (W] proj [U4]|

where W+ is the orthogonal complement of W and ||-|| is the
Hilbert-Schmidt/Frobenius norm.



New results: mathematical analysis of VAC error
[e] lele]e}

Proving convergence (1/3)

1. Colloquially, VAC is an algorithm for estimating eigenfunctions.
Really, VAC estimates eigenspaces and other invariant subspaces.

span 4] ~ span 7;,
j<i<k j<i<k
2. We need a distance between finite-dimensional subspaces of L2 ().

3. Define the projection distance
dr (U, W) = ||proj (W] proj [U4]|

where W+ is the orthogonal complement of W and ||-|| is the
Hilbert-Schmidt/Frobenius norm.

4. The definition also works if dimi < dimW < co. Then, dr (U, W)
measures the distance between U/ and the nearest dim{-dimensional
subspace of W.
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Proving convergence (2/3)

By the ergodic theorem,

PN

Cij (1) = E[oi (Xo) ¢ (X:)]-
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Proving convergence (2/3)

By the ergodic theorem,

PN

Cij (1) = E[oi (Xo) ¢ (X:)]-

By continuity, eigenspaces converge (assuming eigenvalues are simple).
It suffices to consider an idealized VAC algorithm with no sampling error.
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Proving convergence (2/3)

By the ergodic theorem,

PN

Cij (1) = E[oi (Xo) ¢ (X:)]-

By continuity, eigenspaces converge (assuming eigenvalues are simple).
It suffices to consider an idealized VAC algorithm with no sampling error.

Idealized VAC algorithm at lag time 7.

Form matrix C (0) with entries C; (0) = E,, [¢; (Xo) ¢j (X0)]-
Form matrix C () with entries Cjj (1) = E,, [¢; (Xo) ¢ (X7)]-
Solve eigenvalue problem ATv/ (1) = C (0)~' C (7) v/ (7).

Return idealized eigenvalues AT and idealized eigenfunctions

G = Ej V_/’(T)d).l

SR CORIIORES
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Proving convergence (2/3)

By the ergodic theorem,

PN

Cij (1) = E[oi (Xo) ¢ (X:)]-

By continuity, eigenspaces converge (assuming eigenvalues are simple).
It suffices to consider an idealized VAC algorithm with no sampling error.

Idealized VAC algorithm at lag time 7.

Form matrix C (0) with entries C; (0) = E,, [¢; (Xo) ¢j (X0)]-
Form matrix C () with entries Cjj (1) = E,, [¢; (Xo) ¢ (X7)]-
Solve eigenvalue problem ATv/ (1) = C (0)~' C (7) v/ (7).

Return idealized eigenvalues AT and idealized eigenfunctions

G = Ej V_/’(T)d).l

Idealized VAC involves C (7), A7, and ~7.
VAC involves € (1), A7, and 47.

1

SR CORIIORES
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Proving convergence (3/3)

1. In Rayleigh-Ritz method, eigenvalues and eigenfunctions of an
operator A are estimated using eigenvalues and eigenfunctions of
proj [U] Al,, for a subspace U of trial functions.
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2. Idealized VAC is Rayleigh-Ritz with A = T.



New results: mathematical analysis of VAC error
[e]ele] o}
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1. In Rayleigh-Ritz method, eigenvalues and eigenfunctions of an
operator A are estimated using eigenvalues and eigenfunctions of
proj [U] Al,, for a subspace U of trial functions.

2. Idealized VAC is Rayleigh-Ritz with A = T.
3. We can apply convergence results for Rayleigh-Ritz (Knyazev, 1997).
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Proving convergence (3/3)

1. In Rayleigh-Ritz method, eigenvalues and eigenfunctions of an
operator A are estimated using eigenvalues and eigenfunctions of
proj [U] Al,, for a subspace U of trial functions.

2. Idealized VAC is Rayleigh-Ritz with A = T.
3. We can apply convergence results for Rayleigh-Ritz (Knyazev, 1997).

Theorem (Rayleigh-Ritz bound)
1. Idealized VAC eigenfunctions converge
Ve = Nk as projn; — n; for1 < i < k.
@
2. Idealized VAC error is bounded by

dE (Spanlgigk ’YiTaSPanlgigk 77/) <14 Hproj [cbl] T proj [':D]HE
a2 (spany<j<y i, P) B |e=axm — )7

1<

2
4l
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Limitations of Rayleigh-Ritz bound

Rayleigh-Ritz bound explains how error depends on the basis set ®.
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Rayleigh-Ritz bound explains how error depends on the basis set ®.
Rayleigh-Ritz bound doesn 't explain how error depends on the lag time 7.
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Limitations of Rayleigh-Ritz bound

Rayleigh-Ritz bound explains how error depends on the basis set ®.
Rayleigh-Ritz bound doesn 't explain how error depends on the lag time 7.
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Figure: The Rayleigh-Ritz bound asymptotes to infinity at long lag times (left).
The true error decreases and then stabilizes at long lag times (right).
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Limitations of Rayleigh-Ritz bound

Rayleigh-Ritz bound explains how error depends on the basis set ®.
Rayleigh-Ritz bound doesn 't explain how error depends on the lag time 7.

1.0 1.0
2 u
5 0.8 15 0.8
g : .
N 0.6 o 0.6 N asis size
£ E L — 10
v = — 25
< [
5 0.4 204 100
> a
7 0.2 ™ 0.2
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0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
Lag time Lag time

Figure: The Rayleigh-Ritz bound asymptotes to infinity at long lag times (left).
The true error decreases and then stabilizes at long lag times (right).

To understand lag time, we need to prove a new error bound.
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Analyzing lag time

Goal 2: determine how error
depends on lag time

Figure: Molecular dynamics model for
gating protein in the lipid bilayer (Lee
et al., 2018)
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Analyzing lag time

Decompose the error into two parts

dr (span A7, span 77;)

1<i<k 1<i<k

total error

< dr (span ~7, span 77,-> + df (span A7, span 'y,-> .
1<i<k  1<i<k 1<i<k  1<i<k

approximation error estimation error
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Analyzing lag time

Decompose the error into two parts

dr (span A7, span 77;)

1<i<k 1<i<k

total error

< dr (span ~7, span 77,-> + df (span A7, span 'y,-> .
1<i<k  1<i<k 1<i<k  1<i<k

approximation error estimation error

e Approximation error = difference between idealized VAC and true
eigenfunctions 7;.

e Estimation error = difference between idealized VAC and VAC
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Analyzing lag time

Decompose the error into two parts

dr (span A7, span 77;)

1<i<k 1<i<k

total error

< dr (span ~7, span 77,-> + df (span A7, span 'y,-> .
1<i<k  1<i<k 1<i<k  1<i<k

approximation error estimation error

e Approximation error = difference between idealized VAC and true
eigenfunctions 7;.

e Estimation error = difference between idealized VAC and VAC

e VAC is error-prone at short lag times due to approximation error and
at long lag times due to estimation error
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Approximation error (1/2)

New result: idealized VAC eigenfunctions converge at long lag times.
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Approximation error (1/2)

New result: idealized VAC eigenfunctions converge at long lag times.

Theorem (The 7 — oo limit)

1. Idealized VAC eigenfunctions converge

span 77 — proj [®] span n; as T — 00.
1<i<k 1<i<k

2. The rate of convergence is exponentially fast, asymptotically
proportional to A, /.
3. Lastly, approximation error is bounded by

2 T X 2
dg (Span1§igk YirSPani<i<k 77/)

d? (spany<i<y 7i )

e*Uk+1T/2

1< - =
)\Z — @ Tk+1T

)

<1+

provided that A\j, > e~ k17,
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Approximation error (2/2)
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Figure: The Rayleigh-Ritz bound asymptotes to infinity at long lag times (left).
The true error decreases and then stabilizes at long lag times (right). Our
improved bound becomes sharp at long lag times (center).
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Estimation error (1/2)

New result: there is a precise asymptotic formula for the estimation error.
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Estimation error (1/2)

New result: there is a precise asymptotic formula for the estimation error.

Theorem (Asymptotic formula)

Estimation error is described by

2
dr (span A7, span %-T)
1<i<k 1<i<k

Vi) [E(r) = A€ )] vi (7) i

n k
=> > N (1+o0(1))

i=k+1 j=1

in the limit as C (1) — C (r) and € (0) — C(0).
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Estimation error (1/2)

New result: there is a precise asymptotic formula for the estimation error.

Theorem (Asymptotic formula)

Estimation error is described by

2
dr (span A7, span %-T)
1<i<k 1<i<k

Vi) [E(r) = A€ )] vi (7) i

n k
=> > N (1+o0(1))

i=k+1 j=1

in the limit as C (1) — C (r) and € (0) — C(0).

Condition number = maximum change in VAC eigenfunctions as € (0)
and € () become corrupted by small errors = (A\f — )\;H)fl
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Estimation error (2/2)

Step 1: using trajectory data, estimate statistical error in € (0) and C (7).

Step 2: using the asymptotic formula, approximate the mean-squared
estimation error.

T=103 T=10% T=10°
s 10° 10° 10°
=
) —— True error
g Asymptotic
"“'; 10-1 10-1 101 —— estim. error
H (from data)
[a]
m

102 1072 102
1] 2 4 [} 2 4 1] 2 4
Lag time Lag time Lag time

Figure: For a range of trajectory lengths T, the asymptotic formula gives
accurate predictions for the the mean squared estimation error.
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Assessing accuracy

Goal 3: provide examples
assessing accuracy of VAC

Figure: Molecular dynamics model for
gating protein in the lipid bilayer (Lee
et al., 2018)
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Assessing accuracy - dependence on lag time

We've been testing VAC on examples.
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Assessing accuracy - dependence on lag time

We've been testing VAC on examples.

Consider the Ornstein-Uhlenbeck (OU) process dX = —X dt + dW.
Trial 1. Basis = 20 indicator functions, trajectory length = 10000
Trial 2. Basis = 50 indicator functions, trajectory length = 500
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Assessing accuracy - dependence on lag time

We've been testing VAC on examples.

Consider the Ornstein-Uhlenbeck (OU) process dX = —X dt + dW.
Trial 1. Basis = 20 indicator functions, trajectory length = 10000
Trial 2. Basis = 50 indicator functions, trajectory length = 500

Trial 1 Trial 2
1.0
0.8 Py
— A2

5 A
s 0.6 -3
— &
2 0.4 — As
(] o

0.2 Ae

0.0 +

0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5
Time Lag Time Lag

Figure: VAC eigenvalues for the OU process
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Let's estimate span {1y, 72, 73}. Condition number ~ 4.7.
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Assessing accuracy - dependence on lag time

Let's estimate span {1y, 72, 73}. Condition number ~ 4.7.

Trial 1 Trial 2

1.00

== Total Error
0.75 Estim. error e
----- Approx. error -

0.50

N e e @ e e T

0.25

3D subspace
error

0.00
1.00

0.75
: 0.50
0.25

Asymptotic
estim. error

0.00 T T T T
1.00

0.75
0.50

ratio

0.25

VAC eigenvalue

0.00
0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5

Lag time Lag time
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Assessing accuracy - dependence on condition number

Consider the diffusion process
1
dX = —EJUTVU(X) dt +o dW

where

U(x1, x0) = 4x] — 8x% + x; + 0.5x3,

()
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Assessing accuracy - dependence on condition number

Consider the diffusion process
1
dX = —EJUTVU(X) dt +o dW
where
U(x1, x2) = 4x] — 8x¢ + x1 + 0.5x3,
(2 0
Let's apply VAC with

basis = {1,X1,x2,xl2,x1x2,x22},
trajectory length = 500.
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Assessing accuracy - dependence on condition number

Consider the diffusion process

o
o

1
dX = —EJUTVU(X) dt +o dW

I
D>
N

5
% 06 — A
where g N
go.4 — A
U(x1, x2) = 4x7 — 8x¢ + x1 + 0.5x3 . — s
1L,X2) = 4%, 1 1 925 0.2
2 0 0.0
7=\ V3] ‘103 102 10% 10° 10!
Lag time

Let's apply VAC with
basis = {1,X1,x2,xl2,x1x2,x22},
trajectory length = 500.

Figure: VAC eigenvalues for the double well
potential
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Assessing accuracy - dependence on condition number

] I "
© | --- Total Error b R TOtalErTor
§ s o4 ‘\' Estim. error E ,o_ 0.4 ,’,/” Estim. error
‘ A - \ L= G .

E = \\-..- ____________ E':[o_)(_ Soe K- e Ao~ pprox. error
5 50.2 SEo,
2 n
9 [=]
X " 0.0

H 13
g204 £80.4
8 g
EEo02 E£0.2

0 -
<9 / 2%

0.0 0.0
$ 1o $ 10
4 ©
£ s
25§05 &% 0.5
'a 1 .a H4
g S A
0.0 0.0
> o 1 2 3 > 0 1 2 3
Lag time Lag time
Figure: Subspace {n1, 72}, Figure: Subspace {n1,m2, 73},

condition number &~ 2.0 condition number & 9.5
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Conclusions

Figure: Molecular dynamics model
for gating protein in the lipid
bilayer (Lee et al., 2018)

. We proved convergence of VAC

eigenfunctions.

. We determined how error depends

on lag time.

. We provided diagnostic tools to

gauge error.
e VAC eigenvalue ratio
e condition number
e asymptotic estimation error
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