Eleven Chen

with Charles S. Peskin, Elaine Li, Leif Ristroph
AMSURE 2022

Motivation

- No spinning: Fall straightly to the ground
- Backspin: Gliding for a long distance

Can we simulate a simplified basketball?

- A hollow cylinder slightly heavier than water(~\%3), in a periodic domain
- Fix rotation rate but leave the center of mass free
- We found:
* Frequency(f) is high, steady horizontal motion
* Frequency is low, unsteady gliding motion
* The transition is sharp, there exists critical f
- Key result: quantitative relation between U and f during steady state

Animations

Literatures

- Flow past a rotating cylinder which was hold in place (experiments/simulations)
- Novelties:
* Effect of gravity
* Degree of freedom, cylinder itself finds its U
- Re- α phase diagram. Line shows separation between steady and unsteady state.

Kang et al. 1999

A model

- Analyze: superposition of two steady flows in an infinite domain (Ask me if you want more details)
- Good at predicting U(f) when f large enough
- Not good at predicting the critical transition frequency

$$
\begin{aligned}
& L i f t=2 \rho U \pi \omega R^{2} \\
& 2 \rho U \pi \omega R^{2}=m g \\
& U(f)=\frac{m g}{4 \pi^{2} \rho R^{2} f}
\end{aligned}
$$

Velocity components of the cylinder

- Mass/length $=0.5$ gram $/ \mathrm{cm}, 10$ rotations $/$ second, radius $=0.5 \mathrm{~cm}$

Horizontal velocity(cm/second) vs. time(second)

Vertical velocity(cm/second) vs. time(second)

Key result !

- Relationship between steady horizontal speed and rotational frequency

a: radius of the cylinder

Current and future work

- Transition(boundary layer theory)
- Experiment
- 3D simulation(rigid body motion in 3d)

ROTOBOT?

Credit: Leif Ristroph

Questions?

Jost Seifert, 2012

Numerical method

- A penalty immersed boundary method for a rigid body in fluid, Kim \& Peskin 2016
- Red dots stick and move with rigid body
- Green dots move with the velocity of the fluid
- The center of rigid body moves according to $\mathrm{F}=\mathrm{m} \mathrm{a}$
where F is calculated from gravity and the spring forces

