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Abstract

In this paper we propose a stochastic mathematical model to study a large population of pulse-
coupled integrate-and-fire neural oscillators, inspired by the work of R. E. Lee DeVille and Charles
S. Peskin [5]. It improves their original model by incorporating spontaneous leaking and inhibi-
tions. This model inherits the bifurcation phenomenon observed in the original model, demonstrate
the way that spontaneous leaking contribute to synchronizations, and detect a stronger bifurcation
phenomenon under a strong inhibitory feedback loop. Also, we develop mean-field formulations as
an approximation to the new model. Numerical results demonstrate that the mean-field approxi-
mation capture the main characteristics that observed in the stochastic model, such as bifurcations
and feedback-oscillations.

1 Introduction

The study of synchronization phenomenon of non-linear oscillators has brought a wide
range of attentions. It is first time introduced by Huygens[10] when studying coupled pen-
dulum clocks. Some review in this field are provided by but not limited to Strogatz [18],
Pikovsky et al.[17], Winfree[23].

In this paper, we investigate the synchronization problem under settings of pulse-coupled
integrate-and-fire neural oscillators. These oscillators are coupled only when some of them
fire. There are two kinds of couplings in our model, namely excitatory firing and inhibitory
firing. Excitatory firing drives the phases of other coupled neurons toward their firing thresh-
old, while inhibition drives their phases away from the threshold.

A lot of work has been done in specific context of these integrate-and-fire oscillators and
a wide range of phenomenon has been obsvered and explored (Kuramoto [13][12]; Abbott
and van Vreeswijk[1]; Gerstner and van Hemmen[8]; Hansel et al.[9]; Tsodyks et al.[20];
van Vreeswijk et al.[22]; Bressloff and Coombes[2]; Terman et al.[19]; Campbell et al.[3];
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Goel and Ermentrout[6]; Lindner et al.[14]). On the other hand, some general but more ab-
stract models have also been explored. Usually, each neuron is represented by a real number
k ∈ [V0, VK ] as its voltage level. When a neuron’s voltage level k been raised to the firing
threshold VK , the corresponding neuron ”fires” and is reset to V0. Knight [11] showed that a
population of uncoupled leaky integrate-and-fire neurons can be synchronized by a common
periodic input. Peskin [16] has shown that two “slightly leaky” integrate-and-fire oscillator
synchronize under reasonable assumptions. A generalization of this result to any number of
neurons has been proved by Mirollo and Strogatz [15], who further clarified the role of “leak-
iness” in synchronization. Moreover, Senn and Urbanczik [21] showed that deterministic
networks consisting of nonidentical pulse-coupled oscillators without leakiness synchronize
generically. In 2008, DeVille and Peskin [5] showed that a stochastic pulse-coupled neural
network with discrete voltage level and without leaking synchronized when couplings are
“strong” and it is asynchronous when couplings are “weak”. More surprisingly, they further
discovered that there exists a range of coupling parameters such that the stochastic model
switches spontaneously between synchrony and asynchrony.

In this present paper, we replace the usual deterministic integrate-and-fire neuron by a
fully stochastic, continuous-state, leaking, and integrate-and-fire model. Also, we consider
neural networks with both excitatory and inhibitory neurons. Although the new model al-
lows complex random network structures, we leave the study of it to future work. We choose
to work with a stochastic neuron network for the physiological importance and realistic of
synaptic failures and random external inputs. For example, this consideration includes the
phenomenon that, with some probability, the arrival of an action potential at a pre-synaptic
terminal causes the release of neural transmitters stored in synaptic vesicles. In previous
work done by DeVille and Peskin [5], the they investigated a simple case: the number of vesi-
cles released at a given synapse upon the arrival of an action potential is either 0 or 1 and, for
each released vesicle, the post-synaptic voltage potential is raised by a same fixed amount.
This idealization allowed them to investigate non-leaky excitatory-only neuron populations
with discrete states. In order to further investigate the role of leaking and inhibition in syn-
chronization of a fully stochastic neuron population, we need to generalize the old model in
a reasonable way, which is not completely straightforward. One possible model of achieving
this goal is presented in this paper, and, moreover, we write down a mean-field formulation
to approximate the stochastic model.

2 Stochastic Model

In this section we propose a stochastic model based on previous work by R. E. Lee DeVille
and Charles S. Peskin [5]. Section 2.1, Section 2.2, and Section 2.3 develop the new model
in steps.

Since the role of complex random network structures in synchronization of neurons is out
of the scope of our discussion in this paper, we choose one network structure and investigate
leaking and inhibitions on this particular network.
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2.1 Network Structure for Coupling
Consider a population of pulse-coupled neurons, which are further divided into two sub-

populations based on the type of neurotransmitters been released per neuron – inhibitory
and excitatory neural populations. Within each of the type of coupling shown (Figure 1),
the coupling is from all neurons of the upstream type to all neurons of the downstream type.

Figure 1: interactions between two subpopulations (inhibitory and excitatory neural populations)

In Figure 1, Pee, Pei, Pie are matrices whose entries are probabilities and ρ is a vector
whose entries are probabilities per unit time. (Pee)jk is the probability of the k-th excitatory
neuron being promoted to higher voltage level by a stochastic jump, if the j-th excitatory
neuron fires. Similarly, (Pei)jk is the probability of the k-th inhibitory neuron being promoted
caused by the j-th excitatory neuron, while (Pie)jk is the probability of the k-th excitatory
neuron being inhibited if the j-th inhibitory neuron fires. Also, ρj is the probability per unit
time of the j-th excitatory neuron being promoted because of random external inputs. ne

and ni are the number of excitatory and inhibitory neurons respectively.

Note that, in the relations explained above, we do not allow an inhibitory neuron to
receive any external inputs. Although the network structure that represented by Pee, Pei, Pie

can be quite complicated, we restrict our attention to the networks with the same choices
for every entries of each of those three matrices. It should be pointed out that this network
structure is not an “all-to-all” neural network. For example, inhibitory neurons cannot in-
hibit themselves and the coupling between neurons are fully stochastic.

In this model, time runs continuously until some neuron has been promoted over firing
threshold VK ∈ R+, namely a firing event occurs, and then there may be a cascade of firing
events that we model as occurring at an instant of time. We describe the dynamics between
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firing cascade first, and the cascade dynamics later.

2.2 Between Firing Cascades
We could define ve

j (t) ∈ [V0, VK ] as the voltage level for the j-th excitatory neuron at
time t, where VK is the threshold for triggering a firing event. Similarly, we could define
vi

j(t). Therefore, vectors ve(t) := (ve
j (t))ne

j=1 and vi(t) := (vi
j(t))ni

j=1 represents the state of our
system at time t, where ne and ni are the population size of excitatory and inhibitory neurons.

Spontaneous Promotions by External Inputs: For each excitatory neuron, there is
some probability per unit time ρ that it jumps to a higher voltage level as a result of receiving
external input. Moreover, the size of the jump, denoted by J , is randomly distributed on
the positive real line according to some distribution D. For example, at ∀t ∈ R+,

ve
j (t+ ∆t) = min(ve

j (t) + J, VK)

where
∆t ∼ exp(ρ) and J ∼ D ≡ gamma(a, b) (a, b > 0)

and ∆t is waiting time until the j-th neuron jumps. The fact that D is a continuous one is
crucial to the formulations shown in Section 3, which will be explained in Section 3.1.

Leaking Voltage: The leaking process happens only between firing cascades: volt-
age level of a neuron leak exponentially towards the zero voltage level. With spontaneous
promotions and leaking, we conclude what happens between firing cascades as follows

dve
j

dt
= −γve

j +
∑

i

δ(ti)Ji and
dvi

j

dt
= −γvi

j

where
∆ti ∼ exp(ρ), ∆ti = ti − ti−1, and Ji ∼ D

as long as the voltage level of the j-th neuron is below firing threshold VK . Note that all the
Ji above are caused by external inputs, and in the particular network structure we restricted
our attention to, as in Figure 1, the inhibitory neurons do not receive external inputs. We
say that γ ∈ R+ is the rate of leaking in later discussions.

2.3 Firing Cascade
When the voltage level of some excitatory neuron has been promoted above the firing

threshold K, the system enters a firing cascade, i.e. a sequence of contiguous firings in which
each one caused by some previous firing. We assume such a cascade happens in an instance
of time and that each neuron can only fire once in each cascade. Every neuron that fires
during a cascade has the possibility of influencing other neurons, and some of these may fire.
We model this by creating a queue of neurons that have fired but whose influence has not
yet been taken into account. The cascade ends when the queue is empty. During a firing
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cascade, there is no leaking process, since no time has elapsed. At the end of a cascade, all
of the neurons that fired are reset to the zero voltage level.

An Excitatory Firing: If an excitatory neuron fires, there is certain probability that
another neuron been promoted by a stochastic jump. For simplicity, we choose the same
distribution for stochastic jumps caused by excitatory firings as for spontaneous input.

An Inhibitory Firing: If an inhibitory neuron fires, only excitatory neurons can receive
the signal in our model. The inhibition we are considering here is shunting inhibition. If a
neuron is inhibited, then its voltage level decays to a fixed fraction of its previous value.

3 Mean-Field Approximations

In this section, we do a mean-field approximation to the stochastic system described
above. In section 3.1, we define basic quantities that the mean-field approximation focuses
on. In section 3.2, a derivation of the mean-field formulation is presented. In section B, a
discrete version of the mean-field formulation is established based on the continuous one. In
Appendix A, a detailed mean-field algorithm is stated.

3.1 Preliminaries
In the stochastic model, we denote P as the corresponding stochastic process without

further specifying the underlying probability space. With those notations established above,
the state of our system at time t could be fully described if, for any k1, k2 ∈ (0, K), the value
of following random variables are known:

Me(k1, k2, t) := Σne
j=1X{ve

j (t)∈[k1,k2]}

Mi(k1, k2, t) := Σni
j=1X{vi

j(t)∈[k1,k2]}

Ne
0(t) := Σne

j=1X{ve
j (t)=0}

Ni
K(t) := Σni

j=1X{vi
j(t)=K}.

where XA is indicator function of event A. Me(k1, k2, t) and Mi(k1, k2, t) are the numbers
of excitatory and inhibitory neurons sitting between voltage level k1 and k2 at time t re-
spectively. It does not make sense to talk about “number density” of neurons at voltage
level k in the stochastic model. However, we could make sense of this number density no-
tions in mean-field limits. Define functions Xe(k, t): (0, K) × [0,∞) → R+ and Xi(k, t):
(0, K)× [0,∞)→ R+ such that for any interval [k1, k2] ∈ (0, K) we have∫ k2

k1
Xe(k, t)dk := EP[Me(k1, k2, t)]

∫ k2

k1
Xi(k, t)dk := EP[Mi(k1, k2, t)]
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representing number density of excitatory and inhibitory neurons on level k at time t respec-
tively.

Moreover, by considering the stochastic model, we notice that after each firing cascade
there will be some number of neurons being reset to the zero voltage level. Also, between
firing cascade, there will be a process which accumulates neurons at the topmost level in order
to trigger a firing event. The fact that the jumping distribution D is continuous guarantees
that all the voltage level except the zero and topmost level will not have concentrations. For
those reasons, a concentration of neurons will only be sitting at the lowest and the topmost
level, i.e. the zero level and firing threshold K. One could also interpret those two quantities
as two δ functions and incorporate them into Xe and Xi. For the purpose of simplicity, we
consider them separately from Xe and Xi and define functions N e

0 (t) : [0,∞)→ [0, ne] and
N e

K(t) : [0,∞)→ [0, ne] as
N e

0 (t) := EP[Ne
0(t)]

N e
K(t) := EP[Ne

K(t)].
These two functions represents the average number of excitatory neurons on the zero and
the topmost voltage level at time t respectively. Similarly, we define random variables Ni

0(t)
and Ni

K(t) for inhibitory neurons as well as their mean-field limits N i
0(t) and N i

K(t).

The firing condition can be approximated by

N e
K(t) ≥ 1,

which is one the places where approximations come into play. Let t0 = 0 and define tn for
n ∈ {1, 2, ...} recursively as

tn = inf{tn−1 + ∆t : N e
K(tn−1 + ∆t) ≥ 1 and ∆t > 0}

which represents time of the n-th firing cascade. A convention we are following is Xe(k, tn),
Xi(k, tn), N e

K(tn), and N i
K(tn) represent the corresponding values at the end of the n-th

firing cascade.

3.2 Derivations
There are more than one approach to reveal the final formulations and we only discuss

one of them as presented in the following Sections. An assumption that holds for all later
computations is that N e

K(t) and N i
K(t) will not have exponential leaking toward zeros level

at any time.

3.2.1 Between Firing Cascades

First, we write down a formula for flux of the excitatory neuron population and assuming
that up-crossing flux through level k is positive:

Fe(k, t) :=− γkXe(k, t) + ρN e
0 (t)P(J ≥ k) +

∫ k

0
ρXe(ε, t)P(J ≥ k − ε)dε, 0 < k < K (1)

where J ∼ D with density fJ(x).
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Then, we write down dynamics for the number of neurons over an interval [k1, k2], with
0 < k1 < k2 < K.

d

dt

( ∫ k2

k1
Xi(k, t)dk

)
= γk2Xi(k1, t)− γk1Xi(k2, t) (2)

d

dt

( ∫ k2

k1
Xe(k, t)dk

)
= Fe(k1, t)− Fe(k2, t) (3)

=
(
− γk1Xe(k1, t) + ρN e

0 (t)P(J ≥ k1) +
∫ k1

−∞
ρXe(ε, t)P(J ≥ k1 − ε)dε

)
−
(
− γk2Xe(k2, t) + ρN e

0 (t)P(J ≥ k2) +
∫ k2

−∞
ρXe(ε, t)P(J ≥ k2 − ε)dε

)
Note that, since the inhibitory neurons in our model does not receive external inputs,

there are no such terms corresponding to spontaneous promotions and thus only the leaking
terms left. The dynamics of N e

0 (t) and N e
K(t) can be easily write down, while N i

0(t) and
N i

K(t) do not change between cascade since there are no leaking and external inputs to
them. From equations (2)-(3) and with enough regularity assumptions on Xe and Xi, we
arrive at the following conclusions:

d

dt
N e

0 (t) = −ρN e
0 (t) (4)

d

dt
N e

K(t) =
∫ K

0
ρXe(ε, t)P(J ≥ K − ε)dε+ ρN e

0 (t)P(J ≥ K) (5)

∂

∂t
Xe(k, t) = γ

∂

∂k

(
kXe(k, t)

)
− ρXe(k, t) + ρN e

0 (t)fJ(k) +
∫ k

0
ρXe(ε, t)fJ(k − ε)dε (6)

d

dt
N i

0(t) = 0 (7)
d

dt
N i

K(t) = 0 (8)
∂

∂t
Xi(k, t) = γ

∂

∂k

(
kXi(k, t)

)
(9)

Equations (4)-(5) and (7)-(9) provide complete descriptions of dynamics for mean-field
limits of the stochastic systems when it is between cascades. It could be checked analytically
that either (4)-(5) or (7)-(9) are conservative of the total number of neurons, i.e.∫ K

0

∂

∂t
Xe(k, t)dk + d

dt
N e

0 (t) + d

dt
N e

K(t) = 0 (10)∫ K

0

∂

∂t
Xi(k, t)dk + d

dt
N i

0(t) + d

dt
N i

K(t) = 0 (11)

3.2.2 An Excitatory Firing Within a Cascade

We start from here to the end of Section 3.2.3, discussing how those mean-field limits being
updated inside a firing cascade, which happens at a instant of time. We proceed as before
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by considering flux caused by an excitatory firing. Assume that up-crossing voltage level k
is positive, then

Fcas(k) :=
∫ k

0
pX(ε, t)P(J ≥ k − ε)dε+ pN0(t)P(J ≥ k) (12)

Let Xold denote either the number density of excitatory or inhibitory neurons before one
firing event occurs and Xnew denote the resulting density after a firing event. Therefore, we
have the following result on a interval [k1, k2], with 0 < k1 < k2 < K:∫ k2

k1
Xnew(k, t)−Xold(k, t)dk = Fcas(k2)− Fcas(k1) (13)

⇒ 1
k2 − k1

∫ k2

k1
Xnew(k, t)dk = 1

k2 − k1

∫ k2

k1
Xold(k, t)dk − Fcas(k2)− Fcas(k1)

k2 − k1
(14)

Let k2 → k1, and with some regularity assumptions over Xold and Xnew, we have

Xnew = (1− p)Xold(k, t) +
∫ k

0
pXold(ε, t)fJ(k − ε)dε+ pN0(t)fJ(k), (15)

Equation (15) provides us with the updating rule for number density of neurons of each
type after an excitatory firing occurs. To make later discussion easier, we define the following
two operators:

Gee(X,N0)(k, t) := (1− pee)X(k, t) +
∫ k

0
peeX(ε, t)fJ(k − ε)dε+ peeN0(t)fJ(k) (16)

Gei(X,N0)(k, t) := (1− pei)X(k, t) +
∫ k

0
peiX(ε, t)fJ(k − ε)dε+ peiN0(t)fJ(k) (17)

Therefore, we conclude the updating scheme after an excitatory firing within a cascade as
(18)-(19) and (20)-(21) for excitatory population and inhibitory population repectively:

N e
0 ← (1− pee)N e

0 , Xe ← Gee(Xe, N
e
0 ) (18)

N e
K ← N e

K +
∫ K

0
peeXe(ε, t)P(J ≥ K − ε)dε+ peeN

e
0 (t)P(J ≥ K) (19)

N i
0 ← (1− pei)N i

0, Xi ← Gei(Xi, N
i
0) (20)

N i
K ← N i

K +
∫ K

0
peiXi(ε, t)P(J ≥ K − ε)dε+ peiN

i
0(t)P(J ≥ K) (21)

3.2.3 An Inhibitory Firing Within a Cascade

As shown in our network structure (Figure 1), an inhibitory firing can only influence
excitatory neurons with probability pie, while an inhibitory neuron are not allowed to inhibit
itself. And once a excitatory neuron being inhibited, its voltage level decays to some fix
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fraction q of current voltage level. Similarly, the operator could be defined as:

Xnew(k, t) = Gie(Xold)(k, t) :=

Xold(k, t)− pieXold(k, t) + pieXold(k
q
, t), if k

q
≤ K

Xold(k, t)− pieXold(k, t), otherwise
(22)

At the same time, all the other mean-field quantities stay unchanged. Therefore, the
above is a complete updating scheme after a single inhibitory firing event.

3.2.4 Exiting Criterion for a Firing Cascade

At time tn, the system enters into the n-th firing cascade, at the start of which we initialize
a queue Q to store neurons that reach the firing threshold but have not yet been taken into
account. By iterating through Q, we will be able to update the mean-field quantities by a
sequence of updating schemes determined by the type of the current firing neuron. At the
same time Q is extended by new neurons that being promoted to threshold K. We say that
a cascade stops at iteration τ if and only if

τ = inf{m ∈ Z+ : |Q| = 0}

where |Q| is the size of the queue Q.
At each iteration, we remove the first neuron in Q and calculate ∆le = bN e,new

K −N e,old
K c

and ∆li = bN i,new
K −N i,old

K c. Then, initialize a list of ∆le 1’s and ∆li 0’s, randomly permute
it, and extend Q at the end with this new list.

4 Results

4.1 Bifurcations Between Synchrony and Asynchrony
In Deville and Peskin[5]’s model, they not only observed synchronized firings under strong
coupling and asynchronized firings under weak couplings, but also discovered a bi-stable
phenomenon within a range of coupling parameters. That is the phase transition between
synchronized modes and asynchronized modes happens not at a critical point but at a critical
range of coupling parameters, within which there is bifurcation phenomenon and allowing
the stochastic model switching spontaneously between synchrony and asynchrony. Evidenc-
ing by the results shown below, we claim that both the stochastic model and the mean
field approximations that we proposed earlier captures synchronization, asynchronization,
and bifurcations. In this section, we restrict our attention to the simplest case where both
leaking and inhibitions are zero.

Figure 1 includes snapshots from a phase transition start at a asynchronized state while
end up to a synchronized state, during which we observe the bifurcation phenomenon. As
in the middle sub-figure, when we have pee = 0.0100, we could observe the state switches
back and force and the waiting time for switching seems have its own randomness built into
it. We conjectured that the waiting time is exponentially distributed and we are planning
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Fig. 1: Stochastic Neural Network Model, Without Leakage and Inhibitions

†The set of experiments presented above are under common parameter choices: ne = 1000,
K = 10, γ = 0, ni = 0, ρ = 10. And from top to bottom, we have pee = 0.0096, pee = 0.0098,
pee = 0.0100, pee = 0.0102, pee = 0.0104. We choose the jump distribution D as Gamma
distribution with mean 1 and variance 0.25. Note that these are results come out of the stochastic
model explained in Section 2.

to show this directly in future work. In this simplest case, we could actually predict around
which value of pee we will have this phase transition using some non-rigorous calculations.
Assume we are at a totally asynchronized state and a cascade happens, the condition for
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Fig. 2: Mean-Field Approximations, Without Leakage and Inhibitions

†The set of experiments presented above are under common parameter choices (same as Figure 1):
ne = 1000, K = 10, γ = 0, ni = 0, ρ = 10. Also, the number of discrete voltage level d = 200. The
first two plots have pee = 0.0102, while the other two have pee = 0.0103. Again, we choose the
jump distribution D as Gamma distribution with mean 1 and variance 0.25. In other word, the
first two plots sharing exactly the same parameter choice but with different randomized initial
condition. The same situations happens to the other two plots. Note that these are results come
out of the deterministic mean-field model explained in Section 3 and Appendix C.

only one neuron fires in this cascade is pee
ne

K
< 1 if we assume that neurons are distributed

roughly uniformly on discrete voltage level {0, 1, ..., K − 1}. The reason we could think of
this as discrete voltage level out a continuum [0, K] is that, in the experiments above, we
choose the jump distribution D with mean 1 and small variance. In this case pee

ne

K
< 1

implies that pee = 0.01 since we have ne = 1000 and K = 10.

Parallel to our discussions of the stochastic model, the mean-field approximation actually
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captures those phenomenon that mentioned above in a slightly different flavor. In Figure
2, we have four snapshots from the bifurcation range under the same choices for ne, K, γ,
ni, ρ, and D as above. In first two plots, by randomly initialize the starting value of XE

and XI , we get two completely different modes with pee = 0.0102. Similarly, we also get
two different modes with pee = 0.0103. Since each mode corresponding to a steady state of
the mean-field system, we again observed the bi-stable phenomenon but in a deterministic
system. The fact that those results in Figure 1 comes from a stochastic system makes them
noisy but ensure they are capable of switching back and force spontaneously. Moreover, if
we compare the size of bursts in corresponding plots of Figure 1 and 2, we could see that
they match each other pretty well within the synchronized scheme.

Fig. 3: Leaking and Bifurcations, Without Inhibitions

†The set of experiments presented above are under common parameter choices: ne = 1000,
K = 10, ni = 0, ρ = 10. We change pee and γ and calculate the accumulated firing rate in each
possible mode under every set of parameters. Note that these are results come out of the
stochastic model explained in Section 2.

4.2 Leaking Contributes to Synchronizations
In this Section, we focus on results related to spontaneous leaking, remove inhibitory

neurons for now, and study how leaking affects the range of bifurcations. In Figure 3, we
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could see that as γ increases, the bifurcation range shifts to lower value, which indicates
that leaking is makes the phase transition from asynchronous to synchronous happens at
a weaker coupling condition. At the same time, the difference between accumulated firing
rate of those two modes is driven towards each other when leaking rate γ is large, and such
difference eventually becomes indistinguishable.

In particular, three snapshots shown in Figure 4 illustrate the contribution of leaking
towards synchronized phase at a specific pee value. Fixing all other parameters unchanged,
by taking leaking rate γ = 0.5, 1.0, 1.5 from the topmost plot to the bottom one, we observe
that the stochastic system changes from an asynchronous mode to a synchronized one.

Fig. 4: Leaking and Bifurcation with pee = 0.0094, Without Inhibitions

†The set of experiments presented above are under common parameter choices: ne = 1000,
K = 10, ni = 0, ρ = 10. And from top to bottom, we have γ = 0.5, γ = 1.0, γ = 1.5. We choose
the jump distribution D as Gamma distribution with mean 1 and variance 0.25. Note that these
are results come out of the stochastic model explained in Section 2.

4.3 Feedback Oscillations Caused by Inhibitory Populations
In this section, we are interested in the phenomenon of feedback oscillations under

a strong inhibition-feedback loop. That is neural populations are switching between syn-
chronized modes and asynchronized modes because of a negative feedback loop caused by
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inhibitions. An example of it is shown by Figure 5.

Fig. 5: Feedback Oscillations

†There are three experiments and each of them has two plots, one to the excitatory neurons
(EXC) and one for inhibitory neurons (IHB). They all have the same parameter choices but are
results from Stochastic (first 2 plots) and Mean-Field models (the other 2 plots). The parameter
choices are ne = 1000, K = 10, ni = 50, pee = 0.2, pie = 0.8, pei = 0.8, ρ = 10. We choose the
jump distribution D as Gamma distribution with mean 1 and variance 0.25.

We see that, in the stochastic system, there are two modes - Synchronous and Asyn-
chronous modes. Similar to Section 4.1 and Section 4.2, under strong inhibition feedback
loop, we have a bifurcation phenomenon that allow the stochastic system switching between
those two modes. However, the mean-field deterministic system shows that the underline
steady states arein different situation. In the last 2 plots in Figure 5, the early phase
corresponding to the synchronized mode while the later phase corresponding to the asyn-
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chronous mode. After running many other experiments with different initial conditions, the
mean field system always experience similar situation as Figure 5: staring with the unsta-
ble steady state (synchrony) and ending in a stable and absorbing steady state (asynchrony).

5 Conclusion

This paper proposes a fully stochastic model to simulate an neuron network, which
allows complex network structures, leaking and inhibitions. Based on this model, we ex-
plore the role of leaking and shunting inhibitions in terms of synchronization of stochastic
neural network and continue to observe bifurcation phenomenon within a range of param-
eter choices. Our results evidence that leaking contributes positively to synchronization of
neural populations and stronger leaking makes synchronization and asynchronization states
less distinguishable form the accumulative firing rate. Within a range of parameter choices,
shunting inhibitions result in a bifurcation phenomenon because of the negative feedback-
loop which makes the model oscillates between synchrony and asynchrony. Comparing to
the bifurcations in section 4.1, this new bifurcation phenomenon caused by the feedback
loop works for wider range of parameters and has more distinguishable switching between
synchronous and asynchronous states.

To analysis this model, we also propose a mean-field approximation to the stochastic
model. By numerically solving this mean-field systems, we have cleaner views over the
steady states within the range of bifurcations. In particular, we know that both synchronous
and asynchronous states are stable when only having coupled excitatory population. How-
ever, the underlying synchronous state is less stable when having the negative feedback loop,
while the asynchronous state is stable and absorbing. In future work, we are also aiming at
searching for rigorous mathematical relations between the stochastic model and the mean-
field system.
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A Pesudo-Code of Stochastic Model

Algorithm 1 Simulating Neural Networks with Leaking and Shunting Inhibitions
1: t← 0
2: for j ∈ {1, ..., n} do
3: choose vj ∈ [0, K)
4: end for
5: type(1 : ne)← 0, type(ne + 1 : ne + ni)← 1
6: while t < tmax do
7: choose j uniformly in {1, ..., n}
8: vj ← vj + J , where J ∼ D
9: if vj ≥ K then

10: Q← [j]
11: while |Q| > 0 do
12: c← Q(1), newlist← [ ], Q← Q(2 : end), τ = type(c)
13: for k ∈ {1, ..., n} do
14: if vk < K then
15: if rand < pc,k then
16: if τ == 1 then
17: vk ← vk + J , where J ∼ D
18: if vk ≥ K then
19: append k to newlist
20: end if
21: else
22: vk ← vk ∗ q
23: end if
24: end if
25: end if
26: end for
27: Q← [Q, randperm(newlist)]
28: end while
29: end if
30: vj ← 0 if j-th neuron just fired
31: t← t+ τ , where τ ∼ exp(Nρ)
32: end while
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B Discretization of the Mean-Field Formulations

In this section we describe a discrete version of Mean-Field Formulations for mainly three
purposes. First, this discrete version derives from the continuous one discussed above and
serves as a numerical scheme to implement it. Second, it is a direct comparison with various
models consist of discrete voltage levels introduced by Deville and Peskin [5], Deville and
Yi Zeng [4], Georgiadis and Sornette [7]. Third, by doing matrix analysis on this discrete
model, we will have a tool to understand the continuous one. In this section, we will derive
the model from the continuous formulation. For a detailed description of the algorithm,
please referring to Appendix C.

Define XE(t), XI(t) : [0,∞) → R+(d+2) as state vectors with ‖XE‖l1
(t) = ne and

‖XI‖l1
(t) = ni for any time t, which comes from discretizing [0, K] into d mesh intervals.

That is

X l
E(t) =


N e

0 (t), l = d

N e
K(t), l = d+ 1∫ l K

d

(l−1) K
d

Xe(k, t)dk, 0 ≤ l ≤ d− 1,
(23)

X l
I(t) =


N i

0, l = d

N i
K(t), l = d+ 1∫ l K

d

(l−1) K
d

Xi(k, t)dk, 0 ≤ l ≤ d− 1.
(24)

Consider the time is between two firing cascades, by discretizing equations (4)-(9) we
could write down dynamics for state vectors XE

d
dt
Xd

E = −ρXd
E (25)

d
dt
Xd−1

E = γdXd−1
E − ρXd−1

E (26)
d
dt
X l

E = γ(l + 1)X l+1
E − γlX l

E − ρX l
E + ρP

[
l
K

d
≤ J ≤ (l + 1)K

d

]
Xd

E (27)

+
l∑

m=0
ρP
[
(l −m)K

d
≤ J ≤ (l −m+ 1)K

d

]
Xm

E , 0 ≤ l ≤ d− 2

d
dt
Xd+1

E = ρP
[
J ≥ K

]
Xd

E +
d−1∑
l=1

ρP
[
J ≥ K − lK

d

]
Xd

E (28)

And similarly for vector XI , we write
d
dt
Xd

I = 0, d
dt
Xd+1

I = 0 (29)
d
dt
Xd−1

I = γdXd−1
I (30)

d
dt
X l

I = γ(l + 1)X l+1
I − γlX l

I , 0 ≤ l ≤ d− 2 (31)
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And the solutions to (25)-(28) and (29)-(31) are XE(t) = XE(0)eEt and XI(t) = XI(0)eIt,
where E and I are corresponding matrix to the ODE’s. Then, consider the moment when the
system is within a firing cascade. Define EE as the corresponding update matrix for excita-
tory population after an excitatory firing, while EI as the matrix for inhibitory population
after an excitatory firing. Similarly, IE is the matrix for updating excitatory population
after an inhibitory firing. Therefore, excitatory and inhibitory firings can be expressed as
these updating schemes, Xnew

E = EE ∗XE, X
new
I = EI ∗XI ; Xnew

E = IE ∗XE, respectively.
By let entering and exiting condition for a cascade be the same as (FC)t and Section 3.2.4,
we complete the descriptions.

C Pesudo-Code of Discrete Mean-Field Formulations

Algorithm 2 Simulating Neural Networks with Leaking and Shunting Inhibitions
1: t← 0
2: Initialize EE, EI, and IE matrices (Section B)
3: Choose XE, XI ∈ R+(d+2) such that ‖XE‖l1

= ne and ‖XI‖l1
= ni (Section B)

4: while t < tmax do
5: solve system of ODE’s (25)-(30) until t = tn
6: Q← [1], totale = 0, totali = 0
7: while |Q| > 0 do
8: cur ← Q(1), newlist← [ ], Q← Q(2 : end)
9: if cur = 1 then

10: totale = totale + 1
11: Xnew

E = EE ∗XE, X
new
I = EI ∗XI

12: ∆fe = bXnew
E (d+ 1)−XE(d+ 1)c, ∆fi = bXnew

I (d+ 1)−XI(d+ 1)c
13: randomly generate newlist with ∆fe’s 1 and ∆fi’s 0
14: XE = Xnew

E , XI = Xnew
I

15: else
16: totali = totali + 1
17: XE = IE ∗XE

18: end if
19: end while
20: XE(d+ 1) = XE(d+ 1)− totale, XE(d) = XE(d) + totale
21: XI(d+ 1) = XI(d+ 1)− totale, XI(d) = XI(d) + totale
22: end while
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