Motion of a Particle under Asymmetric Forces

By Teddy Gilman Mentors: Dr. Aref Hashemi, Leif Ristroph

Definition

Let f(t) be a periodic function. We say f is **symmetric** if the second half of its period is the negative of the first half. Otherwise, f is **asymmetric**.

sin(t) + sin(2t) if it were symmetric

Particle under an Asymmetric Force with Nonlinear Drag

- Particle under an asymmetric force, say $F(t) = \sin(t) + \sin(\alpha t), \alpha > 1$
- Time-average value of F(t) = 0
- Newton's second law then gives (after nondimensionalization of units): $\frac{dv}{dt} = \sin(t) + \sin(\alpha t) \epsilon v^3$ for $0 < \epsilon \ll 1$.

Nonlinear Drag Term

Hallmarks of the Long-Term Motion (From Experimental/Numerical Observation)

- Time-average always constant
- Varies wildly with different choices of α

$$\circ$$
 $\alpha = 2$ vs. $\alpha = 49/25 = 1.96$

- Simpler' ratios more likely to induce motion
 - 4/3 vs. 25/24
 - odd/odd

Goals

• Find a good analytical approximation for the solution to the ODE:

$$\frac{dv}{dt} = \sin(t) + \sin(\alpha t) - \epsilon v^3$$

- Accurate way to find the motion of a particle under such forces
- Could provide intuition into why the particle moves
- Understand how different choices of α affect the motion

Methods

- Analytical approximations using perturbation and two-timing
 - \circ Power series in ϵ
 - Multiple time scales

Regular Perturbation Attempt

$$\frac{dv}{dt} = \sin(t) + \sin(\alpha t) - \epsilon v^3$$

- For small ϵ , approximate: $v(t, \epsilon) = v_0(t) + \epsilon v_1(t) + \epsilon^2 v_2(t) + \dots$
- Differentiate: $\sin(t) + \sin(\alpha t) \epsilon v^3 = v'_0(t) + \epsilon v'_1(t) + O(\epsilon^2)$
- Expand: $\sin(t) + \sin(\alpha t) \epsilon v_0^3 + O(\epsilon^2) = v_0'(t) + \epsilon v_1'(t) + O(\epsilon^2)$

• Solve:
$$v_0(t) = \int \sin(t) + \sin(\alpha t) dt$$

 $-v_1(t) = \int (v_0)^3 dt$
 $v_0(0) = 0 \text{ and } v_1(0) = 0.$

Solution with Two-Timing

- Two **independent** time scales: $\tau = t$ (small time), $T = \varepsilon t$ (big time)
- Same power series and process as before (w/ chain rule):

Choosing A(T) Correctly

$$-\frac{\partial v_1}{\partial \tau} = \left(-\cos(\tau) - \frac{\cos(\alpha\tau)}{\alpha} + A(T)\right)^3 + A'(T)$$

0

- Eliminate **secular terms** to ensure constant velocity
- Find non-zero time average terms like $\cos^2(\tau)$, $\cos^2(\alpha \tau)$; set up a differential equation for A(T) to get rid of them

$$A'(T) = -\frac{3\alpha^2 + 3}{2\alpha^2} A(T) - (A(T))^3 \iff A(T) = \sqrt{\frac{\frac{3\alpha^2 + 3}{2\alpha^2}}{\left(\frac{3\alpha^2 + 3}{2} + 1\right)e^{\frac{3\alpha^2 + 3}{\alpha^2}T} - 1}}$$

Special case: α = 2

$$-\frac{\partial v_1}{\partial \tau} = \left(-\cos(\tau) - \frac{\cos(\alpha\tau)}{\alpha} + A(T)\right)^3 + A'(T)$$

- $-\frac{1}{\alpha}\cos^2(\tau)\cos(\alpha\tau)$ term has nonzero time average *only if* $\alpha = 2$ (Recall sin and cos power reduction)
- Changes the differential equation for A(T)

$$A'(T) = \frac{3}{8} - \frac{15}{8}A(T) - (A(T))^3$$

Not analytically solvable, but solving for an equilibrium point successfully explains the motion in the α = 2 case

Continuing in this Way

- Higher order expansion reveals similar terms for different values of $\boldsymbol{\alpha}$
 - Experimentally, $\alpha = 3/2$ and $\alpha = 4/3$ give the next strongest motion after $\alpha = 2$, and extra secular terms arise at the level of ϵ^2 in those cases

Position Calculated by rk4 and Two-Timing

Miscellaneous Remaining Thoughts/Observations

- For $\alpha = 3/2$ and $\alpha = 4/3$, smaller values of epsilon are required for accuracy
 - Possibility: even higher order terms
- Only ever see motion induced at even powers of epsilon
 - Terms depend on the parity of the level of expansion
- Explains why 'simpler' ratios induce motion 'earlier'
- Explains why $\alpha = 2$ is qualitatively different from $\alpha = 49/25$

Next Steps

- Design and conduct an experiment
 Vibration machine in the lab
- Four-timing

Questions?