Motion of a Particle under

 Asymmetric ForcesBy Teddy Gilman
Mentors: Dr. Aref Hashemi, Leif Ristroph

\# NYU COURANT

Definition

Let $f(t)$ be a periodic function. We say f is symmetric if the second half of its period is the negative of the first half. Otherwise, f is asymmetric.

$f(x)=\sin (x)$ (symmetric)

$f(x)=\sin (x)+\sin (2 x)$ (asymmetric)

Particle under an Asymmetric Force with Nonlinear Drag

- Particle under an asymmetric force, say

$$
F(t)=\sin (t)+\sin (\alpha t), \alpha>1
$$

- Time-average value of $F(t)=0$
- Newton's second law then gives (after nondimensionalization of units): $\frac{d v}{d t}=\sin (t)+\sin (\alpha t)-\epsilon v^{3}$ for $0<\epsilon \ll 1$.

$$
\frac{d v}{d t}=\sin (t)+\sin (\alpha t)-\epsilon v^{3}
$$

Position Calculated Numerically

Hallmarks of the Long-Term Motion (From Experimental/Numerical Observation)

- Time-average always constant
- Varies wildly with different choices of $\boldsymbol{\alpha}$
- $\boldsymbol{\alpha}=2$ vs. $\boldsymbol{\alpha}=49 / 25=1.96$
- 'Simpler' ratios more likely to induce motion
- $4 / 3$ vs. $25 / 24$

■ odd/odd

Position Calculated Numerically

Goals

- Find a good analytical approximation for the solution to the ODE:

$$
\frac{d v}{d t}=\sin (t)+\sin (\alpha t)-\epsilon v^{3}
$$

- Accurate way tu ilıu uル ॥uviviva a paiticle under such forces
- Could provide intuition into why the particle moves
- Understand how different choices of $\boldsymbol{\alpha}$ affect the motion

Methods

- Analytical approximations using perturbation and two-timing
- Power series in ϵ
- Multiple time scales

Regular Perturbation Attempt

$$
\frac{d v}{d t}=\sin (t)+\sin (\alpha t)-\epsilon v^{3}
$$

- For small ϵ, approximate: $v(t, \epsilon)=v_{0}(t)+\epsilon v_{1}(t)+\epsilon^{2} v_{2}(t)+\ldots$
- Differentiate: $\sin (t)+\sin (\alpha t)-\epsilon v^{3}=v_{0}^{\prime}(t)+\epsilon v_{1}^{\prime}(t)+O\left(\epsilon^{2}\right)$
- Expand: $\sin (t)+\sin (\alpha t)-\epsilon v_{0}^{3}+O\left(\epsilon^{2}\right)=v_{0}^{\prime}(t)+\epsilon v_{1}^{\prime}(t)+O\left(\epsilon^{2}\right)$
- Solve: $v_{0}(t)=\int \sin (t)+\sin (\alpha t) d t$

$$
-v_{1}(t)=\int\left(v_{0}\right)^{3} d t
$$

$$
v_{0}(0)=0 \text { and } v_{1}(0)=0
$$

Issues caused by secular terms: t, tsin(t)

Solution with Two-Timing

- Two independent time scales: $\tau=t$ (small time), $\mathrm{T}=\boldsymbol{\varepsilon}$ ((big time)
- Same power series and process as before (w/ chain rule):

$$
\sin (\tau)+\sin (\alpha \tau)-\epsilon\left(v_{0}(\tau, T)\right)^{3}+O\left(\epsilon^{2}\right)=\frac{\partial v_{0}}{\partial \tau}+\epsilon\left(\frac{\partial v_{0}}{\partial T}+\frac{\partial v_{1}}{\partial \tau}\right)+O\left(\epsilon^{2}\right)
$$

- Solve:

$$
\begin{aligned}
& \sin (\tau)+\sin (\alpha \tau)=\frac{\partial v_{0}}{\partial \tau} \\
& -\left(v_{0}\right)^{3}=\frac{\partial v_{0}}{\partial T}+\frac{\partial v_{1}}{\partial \tau} \\
& -\frac{\partial v_{1}}{\partial \tau}=\left(-\cos (\tau)-\frac{\cos (\alpha \tau)}{\alpha}+A(T)\right)^{3}+A^{\prime}(T)
\end{aligned}
$$

Choosing A(T) Correctly

$$
-\frac{\partial v_{1}}{\partial \tau}=\left(-\cos (\tau)-\frac{\cos (\alpha \tau)}{\alpha}+A(T)\right)^{3}+A^{\prime}(T)
$$

- Eliminate secular terms to ensure constant velocity
- Find non-zero time average terms like $\cos ^{2}(\tau), \cos ^{2}(\alpha \tau)$; set up a differential equation for $A(T)$ to get rid of them

$$
A^{\prime}(T)=-\frac{3 \alpha^{2}+3}{2 \alpha^{2}} A(T)-(A(T))^{3} \Longleftrightarrow A(T)=\sqrt{\frac{\frac{3 \alpha^{2}+3}{2 \alpha^{2}}}{\left(\frac{3 \alpha^{2}+3}{(1+\alpha)^{2}}+1\right) e^{\frac{3 \alpha^{2}+3}{\alpha^{2}} T}-1}}
$$

$$
\alpha=\frac{3}{2}, \epsilon=.1
$$

Velocity Calculated by rk4 and Two-Timing

Special case: $\boldsymbol{\alpha = 2}$

$$
-\frac{\partial v_{1}}{\partial \tau}=\left(-\cos (\tau)-\frac{\cos (\alpha \tau)}{\alpha}+A(T)\right)^{3}+A^{\prime}(T)
$$

- $-\frac{1}{\alpha} \cos ^{2}(\tau) \cos (\alpha \tau)$ term has nonzero time average only if $\boldsymbol{\alpha}=2$
(Recall sin and cos power reduction)
- Changes the differential equation for $A(T)$

$$
A^{\prime}(T)=\frac{3}{8}-\frac{15}{8} A(T)-(A(T))^{3}
$$

- Not analytically solvable, but solving for an equilibrium point successfully explains the motion in the $\boldsymbol{\alpha}=2$ case

Position Calculated by rk4 and Two-Timing

Continuing in this Way

- Higher order expansion reveals similar terms for different values of $\boldsymbol{\alpha}$
- Experimentally, $\boldsymbol{\alpha}=3 / 2$ and $\boldsymbol{\alpha}=4 / 3$ give the next strongest motion after $\boldsymbol{\alpha}=2$, and extra secular terms arise at the level of ϵ^{2} in those cases

Position Calculated by rk4 and Two-Timing

Miscellaneous Remaining Thoughts/Observations

- For $\boldsymbol{\alpha}=3 / 2$ and $\boldsymbol{\alpha}=4 / 3$, smaller values of epsilon are required for accuracy
- Possibility: even higher order terms
- Only ever see motion induced at even powers of epsilon
- Terms depend on the parity of the level of expansion
- Explains why 'simpler' ratios induce motion 'earlier'
- Explains why $\boldsymbol{\alpha}=2$ is qualitatively different from $\boldsymbol{\alpha}=49 / 25$

Next Steps

- Design and conduct an experiment
- Vibration machine in the lab
- Four-timing

Questions?

