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Rotor walks

Attach arrows at each site pointing in any direction. At each step,
rotate the arrow counter-clockwise and move the particle in that direction.
Similar questions as for random walks:

hitting times of sets,

@ number of visits to a site,
@ number of sites visited,
°

recurrent/transient configurations and mechanisms.
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Some applications

e TCS: Diffusion model: task distribution/parallel processors

@ TCS: load-balancing: efficient utilization of computational resources
in parallel and distributed systems. Aim: reallocate the load such that
at the end each node has approximately the same load.

@ TCS: design principles for navigation problems and optimal transport
in networks: what are the most efficient ways to visit all sites with the
least amount of resources/knowledge

@ TCS: broadcasting information in networks
@ Physics: model of self-organized criticality

@ Chemistry: motion of particle affected by its medium
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Connection to random walk

How close is it?
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Recurrence/transience

@ p is recurrent if the rotor walk with initial configuration p returns to
the origin infinitely often (x, = o for infinitely many n);

@ otherwise, we say that p is transient.

I(p,n): the number of walks that escape to infinity.
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Schramm

Schramm:

I 1
lim supM < g (1)

n—o00 n

where otg is the probability that simple random walk in Z4 does not return
to the origin.
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Schramm

2dm particles at x € Z9 — m particles move to each of the 2d
neighbors of x.

@ N = (2d)"m particles at the origin,

@ each particle takes a single rotor walk step,

@ 1 — 1 times: each particle that is not at the origin take a single rotor

walk step.

V paths of length { < r looping at o, exactly (2d)*N particles traverse
this path.

At origin:

N> (A =Np

v:o—o,|yI<r
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Schramm

Now letting each particle that is not at the origin continue performing
rotor walk until hitting 0B, U{o}, the number of particles that stop in 9B,
is at most N(1 —p), so

I-(p, N)

<1l-—p.
N p

For general n, let N be the smallest multiple of (2d)" that is > n.. Then

I(p, 1) . I-(p, N)
n N-—(2d)

The right side is at most (1 —p)(1+2(2d)"/N), so
I(pvn) IT(pvn)
n

limsup ——= < limsup K1l—p=P(T; >

n—o0 n n—oo

T — 00 the right side converges to oq.
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Question...

Is the aligned configuration on Z4,d > 3 as transient as random walk?
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Main results

Theorem

For the rotor walk on Z% with d > 3 with all rotors initially aligned 1, a
positive fraction of particles escape to infinity; that is,

lim inf i m)

n—o00 n

> 0.
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Question...

How about in 2 dimensions?
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Main results

Theorem

For rotor walk in Z? with any rotor configuration p, we have

, Ilpn) _m
limsup ——— < —.
nooo N/logn = 2

Moreover, if all rotors are initially aligned 71, then

liminf —I(T,n)

> 0.
n—oo M/ logn
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Main ideas

@ in order to estimate the number of escapes to infinity, look at number
of particles exiting a large ball before returning to origin

@ asymptotics of green’s function

@ vertical coordinates hit by particles
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Odometer - monotonicity and convergence
Notation: I(w()): the number of times the rotor walk goes to infinity

before the nth return to the origin.
Similar notation in finite setting: I;(u()): the number of times the rotor

walk hits B, before the nt™ return to a.

Figure : Monotonicity and convergence. Figure: thanks Shirshendu Ganguly.

I:(p,n) > Ir(p,n) = I(p,n)
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Odometer

uy, (x) : total number of exits from x by first n particles stopped on

hitting B,.(odometer)
Lemma

For any r > 0 and n € N and any initial rotor configuration p, we have

L (p, up(0)) =n.
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Odometer proof

Starting with N = uJ, (o) particles at the origin, consider the following
two experiments:

@ Let n of the particles in turn perform rotor walk until hitting 0B..
@ Let N of the particles in turn perform rotor walk until hitting
0B, U{o}.

By the definition of uj,, in the first experiment the total number of exits
from the origin is exactly N. Therefore the two experiments have exactly
the same outcome: n particles reach 0B, and N —n remain at the origin.
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Green function

Gr(x,y) = Ex#{ < TIXj =y}

Lawler:
Gy(x,0) = {gd(b"” —124) + O(|>_<|11*d). d f 3 2
= (logr —log[x[) + O(Ix[~7), d=2.
Gr(0,0) = TE[ log T+ O(1). (3)
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Odometer differential conditions

Levine, Peres:

Lemma (Gradient)

For a directed edge (x,y) in Z%, denote by k(x,y) the net number of
crossings from x toy by n rotor walks started at the origin and stopped
on exiting Br. Then

Vug (x,y) = —2d k(x,y) + R(x, y)

for some edge function R satisfying |[R(x,y)| < 4d — 2 for all edges (x,y)

v

Lemma (Laplacian)
Au(x) =divR(x), x # o0
Au(o) = —n + divR(o)

W 30310 /38



Approximating odometer function by the Green function

Let f(x) = nG,(x,0).

f(x) vanishes on 0B
° Af( )—OforXEB —{o}
o Af(o) =

Natural to compare odometer with f.
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Greens function and odometer with n = 1000 and r = 60

Figure : Figure: thanks Shirshendu Ganguly.
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Approximating odometer function by the Green function

Levine, Peres: Let f(x) = nG.(x, o).

Lemma
InZ4, let x € By and p=1+1—|x|. Then,

W (x) — f(x)| < Cp Iogg +8d2.

where uy, is the odometer function for n particles performing rotor walk
stopped on exiting B.
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Positive odometer

We need to show that near the boundary the error term is smaller than
f(x) which ensures positivity of the odometer.

Lemma

There exists a constant 3 > 0 depending only on d, such that for any
initial rotor configuration and v = n'/(d=1) we have uy, (x) >0 for all
X € aB(g,r.

Idea of proof: for x € 0B, we have

lu(x) — f(x)| < C(1—B)rlog 1 _1 B

Wi 3085



Need to look at columns

where initial configurations matters:

Sites at top surface contribute at least 1 to the number of escapes.
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One more odometer

Lemma

For any initial rotor configuration in 7> we have

up (o) = %nlogn +0(n).

Proof.

We have f(0) =nGn(0,0) =n(2logn + 0(1)), and
lunt (0) —f(o)[ = O(n).
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Almost done
Thus, the total number of escapes is @(n) among u(o) particles.

Lemma (Z4,d > 3)
u(o) =nGy(o,0) + O(r) =0(n) )

Lemma (Z?)

u(o) = %nlogn +0O(n)

Now look at proportions:

, I(pn) _m
lim sup < —.
nooo N/logn = 2

()
liminf ———=
n—oo n

> 0.
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Open problems

e transience/recurrence of iid rotors configuration

@ number of sites visited ~ n?/3: constant sequence of rotors, length of
excursions.

e Consider rotor walk in Z? with a drift to the north: each rotor
mechanism is period 5 with successive exits cycling through North,

North, East, South, West. Is this walk transient for all initial rotor
configurations?
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