Escape rates for rotor walk in Z^d

Laura Florescu

2 May, 2013

Laura Florescu

Escape rates for rotor walk in Z^d

2 May, 2013 1 / 28

Contents

- Rotor walks dependent on mechanism, initial configuration
- Escape rates specific theorems
- Proof ideas probability methods on stopped random walks on exiting balls of increasing size
- Open problems analogous questions to random walks: recurrence/transience of arbitrary configurations, number of sites visited

Attach arrows at each site pointing in any direction. At each step, rotate the arrow counter-clockwise and move the particle in that direction. Similar questions as for random walks:

- hitting times of sets,
- number of visits to a site,
- number of sites visited,
- recurrent/transient configurations and mechanisms.

Some applications

- TCS: Diffusion model: task distribution/parallel processors
- TCS: load-balancing: efficient utilization of computational resources in parallel and distributed systems. Aim: reallocate the load such that at the end each node has approximately the same load.
- TCS: design principles for navigation problems and optimal transport in networks: what are the most efficient ways to visit all sites with the least amount of resources/knowledge
- TCS: broadcasting information in networks
- Physics: model of self-organized criticality
- Chemistry: motion of particle affected by its medium

Connection to random walk

How close is it?

< 一型

- ∢ ∃ ▶

Recurrence/transience

- ρ is *recurrent* if the rotor walk with initial configuration ρ returns to the origin infinitely often (x_n = o for infinitely many n);
- otherwise, we say that ρ is *transient*.
- $I(\rho,n)$: the number of walks that escape to infinity.

Schramm

Schramm:

$$\limsup_{n \to \infty} \frac{I(\rho, n)}{n} \leqslant \alpha_d \tag{1}$$

where α_d is the probability that simple random walk in \mathbb{Z}^d does not return to the origin.

Schramm

2dm particles at $x\in \mathbb{Z}^d \to m$ particles move to each of the 2d neighbors of x.

- N = (2d)^rm particles at the origin,
- each particle takes a single rotor walk step,
- r-1 times: each particle that is not at the origin take a single rotor walk step.

 \forall paths of length $\ell \leqslant r$ looping at o, exactly $(2d)^{-\ell}N$ particles traverse this path.

At origin:

$$N\sum_{\gamma: o \to o, \, |\gamma| \leqslant r} (2d)^{-|\gamma|} = Np$$

Schramm

Now letting each particle that is not at the origin continue performing rotor walk until hitting $\partial \mathcal{B}_r \cup \{o\}$, the number of particles that stop in $\partial \mathcal{B}_r$ is at most N(1-p), so

$$\frac{I_r(\rho, N)}{N} \leqslant 1 - p.$$

For general n, let N be the smallest multiple of $(2d)^r$ that is $\geqslant n.$ Then

$$\frac{I_r(\rho, n)}{n} \leqslant \frac{I_r(\rho, N)}{N - (2d)^r}$$

The right side is at most $(1-p)(1+2(2d)^{\rm r}/N),$ so

$$\limsup_{n \to \infty} \frac{I(\rho,n)}{n} \leqslant \limsup_{n \to \infty} \frac{I_r(\rho,n)}{n} \leqslant 1-p = \mathbb{P}(\mathsf{T}_o^+ > r).$$

 $r \rightarrow \infty$ the right side converges to $\alpha_d.$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Question...

Is the aligned configuration on Z^d , $d \ge 3$ as transient as random walk?

Main results

Theorem

For the rotor walk on \mathbb{Z}^d with $d \ge 3$ with all rotors initially aligned \uparrow , a positive fraction of particles escape to infinity; that is,

$$\liminf_{n\to\infty}\frac{I(\uparrow,n)}{n}>0.$$

How about in 2 dimensions?

メロト メポト メヨト メヨ

Main results

Theorem

For rotor walk in \mathbb{Z}^2 with any rotor configuration $\rho,$ we have

$$\limsup_{n\to\infty}\frac{I(\rho,n)}{n/\log n}\leqslant \frac{\pi}{2}.$$

Moreover, if all rotors are initially aligned $\uparrow,$ then

$$\liminf_{n\to\infty}\frac{\mathrm{I}(\uparrow,n)}{n/\log n}>0.$$

Main ideas

- in order to estimate the number of escapes to infinity, look at number of particles exiting a large ball before returning to origin
- asymptotics of green's function
- vertical coordinates hit by particles

Odometer - monotonicity and convergence

Notation: I(u()): the number of times the rotor walk goes to infinity before the nth return to the origin.

Similar notation in finite setting: $I_r(\mathfrak{u}())$: the number of times the rotor walk hits B_r before the n^{th} return to a.

Figure : Monotonicity and convergence. Figure: thanks Shirshendu Ganguly.

$$I_r(\rho, n) > I_R(\rho, n) \to I(\rho, n)$$

Odometer

 $u_n^r(x)$: total number of exits from x by first n particles stopped on hitting $B_r.(\text{odometer})$

Lemma

For any r > 0 and $n \in \mathbb{N}$ and any initial rotor configuration ρ , we have

 $I_r(\rho, u_n^r(o)) = n.$

Odometer proof

Starting with $N=\mathfrak{u}_n^{\mathfrak{r}}(o)$ particles at the origin, consider the following two experiments:

- **(**) Let n of the particles in turn perform rotor walk until hitting $\partial \mathcal{B}_r$.
- **2** Let N of the particles in turn perform rotor walk until hitting $\partial \mathcal{B}_r \cup \{o\}$.

By the definition of u_n^r , in the first experiment the total number of exits from the origin is exactly N. Therefore the two experiments have exactly the same outcome: n particles reach $\partial \mathcal{B}_r$ and N - n remain at the origin.

Green function

$$G_r(x, y) = \mathbb{E}_x \# \{j < T | X_j = y\}$$

Lawler:

$$G_{r}(x, o) = \begin{cases} a_{d}(|x|^{2-d} - r^{2-d}) + O(|x|^{1-d}), & d \ge 3\\ \frac{2}{\pi}(\log r - \log |x|) + O(|x|^{-1}), & d = 2. \end{cases}$$
(2)
$$G_{r}(o, o) = \frac{2}{\pi}\log r + O(1).$$
(3)

イロト イ団ト イヨト イヨト

Odometer differential conditions

Levine, Peres:

Lemma (Gradient)

For a directed edge (x, y) in \mathbb{Z}^d , denote by $\kappa(x, y)$ the net number of crossings from x to y by n rotor walks started at the origin and stopped on exiting \mathcal{B}_r . Then

$$\nabla u_n^r(x, y) = -2d \kappa(x, y) + R(x, y)$$

for some edge function R satisfying $|R(x, y)| \leq 4d - 2$ for all edges (x, y).

Lemma (Laplacian)

$$\Delta u(x) = \operatorname{div} R(x), \ x \neq o$$

$$\Delta \mathfrak{u}(o) = -n + \operatorname{div} R(o)$$

Approximating odometer function by the Green function

Let $f(x) = nG_r(x, o)$.

- f(x) vanishes on ∂B_r
- $\Delta f(x) = 0$ for $x \in B_r \{o\}$
- $\Delta f(o) = -n$

Natural to compare odometer with f.

Greens function and odometer with n = 1000 and r = 60

Figure : Figure: thanks Shirshendu Ganguly.

0.01120	OFO	C C ! !
I ALLIA		51.11
Laana		

Escape rates for rotor walk in Z^{α}

2 May, 2013 21 / 28

Approximating odometer function by the Green function

Levine, Peres: Let $f(x) = nG_r(x, o)$.

Lemma

In \mathbb{Z}^d , let $x \in \mathfrak{B}_r$ and $\rho = r + 1 - |x|$. Then,

$$|u_n^r(x) - f(x)| \leq C\rho \log \frac{r}{\rho} + 8d^2.$$

where u_n^r is the odometer function for n particles performing rotor walk stopped on exiting \mathcal{B}_r .

Positive odometer

We need to show that near the boundary the error term is smaller than f(x) which ensures positivity of the odometer.

Lemma

There exists a constant $\beta > 0$ depending only on d, such that for any initial rotor configuration and $r = n^{1/(d-1)}$ we have $u_n^r(x) > 0$ for all $x \in \partial \mathcal{B}_{\beta r}$.

Idea of proof: for $x \in \partial B_{\beta r}$ we have

$$|\mathfrak{u}(x) - f(x)| \leqslant C(1-\beta)r\log\frac{1}{1-\beta}$$

Need to look at columns

where initial configurations matters:

Sites at top surface contribute at least 1 to the number of escapes.

One more odometer

Lemma

For any initial rotor configuration in \mathbb{Z}^2 we have

$$\mathfrak{u}_n^n(o) = \frac{2}{\pi}n\log n + O(n).$$

Proof.

We have
$$f(o)=nG_n(o,o)=n(\frac{2}{\pi}\log n+O(1)),$$
 and $|\mathfrak{u}_n^n(o)-f(o)|=O(n).$

-

- ∢ ∃ ▶

Almost done

Thus, the total number of escapes is $\Theta(n)$ among u(o) particles.

Lemma (\mathbb{Z}^d , $d \ge 3$) $u(o) = nG_r(o, o) + O(r) = \Theta(n)$

Lemma (\mathbb{Z}^2) $\mathfrak{u}(\mathbf{o}) = \frac{2}{\pi}\mathfrak{n}\log\mathfrak{n} + \mathcal{O}(\mathfrak{n})$

Now look at proportions:

$$\limsup_{n \to \infty} \frac{I(\rho, n)}{n/\log n} \leq \frac{\pi}{2}.$$
$$\liminf_{n \to \infty} \frac{I(\uparrow, n)}{n} > 0.$$

• • = • • = •

- transience/recurrence of iid rotors configuration
- number of sites visited $\approx n^{2/3}$: constant sequence of rotors, length of excursions.
- Consider rotor walk in Z² with a drift to the north: each rotor mechanism is period 5 with successive exits cycling through North, North, East, South, West. Is this walk transient for all initial rotor configurations?