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Motivation

d = F(m) + η

◮ Models for real-world phenomena involve unknown parameters, m

◮ Accurate estimation of parameters relies on informative data, d
(inverse problem)

◮ Data collection limited due to cost or physical constraints

◮ Optimal experimental design (OED):
Design of experimental conditions for parameter inference problems
governed by PDE – where and what to measure/observe?
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Contaminants in groundwater

Inverse problem:
Given concentration readings, infer source of contamination

Graphic from sciencefriday.com
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Contaminants in groundwater

Inverse problem:
Given concentration readings, infer source of contamination

OED problem:
Where to drill wells to optimally infer initial source in event of contamination

Graphic from sciencefriday.com
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Contaminants in groundwater - governing model

ut − κ∆u+ v · ∇u = 0

u(·, Ti) = m

+BCs

◮ u(x, t): concentration

◮ κ > 0: diffusion coefficient

◮ v(x, t): advection velocity field

◮ m: unknown initial concentration



“OED for Bayesian inverse problems” by Karina Koval

Earthquake-generated tsunamis

◮ Tsunamis generated by earthquakes beneath ocean floor

◮ Earthquake  ocean floor deformation  tsunami waves

◮ Tsunami warning relies on knowledge of bathymetry change

◮ Cannot measure this, but can measure water depth
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Earthquake-generated tsunamis

◮ Tsunamis generated by earthquakes beneath ocean floor

◮ Earthquake  ocean floor deformation  tsunami waves

◮ Tsunami warning relies on knowledge of bathymetry change

◮ Cannot measure this, but can measure water depth

Inverse problem: Given water level measurements, reconstruct ocean floor
deformation

OED problem: Place sensors for optimal tsunami source reconstruction and
accurate tsunami forecasting
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Earthquake-generated tsunamis - governing equations
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◮ h(x, y, t): water depth

◮ u(x, y, t) and v(x, y, t): fluid
momentum

◮ B(x, y): bathymetry

◮ Models wave propagation due to
bathymetry change

Seafloor deformation

(Simulations performed in GeoClaw)
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Gaussian process regression

Measure m(xi) directly at points xi
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Posterior visualization

di = m(xi) + ηi

◮ Goal: Determine
distribution for m(x)
given noisy data d ∈ R

s

◮ Gaussian process: probabilistic approach to regression problems

◮ Uses (noisy) data d to update prior knowledge about m
 posterior distribution
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Gaussian regression review

di = m(xi) + ηi

Goal: determine m∗ = [m(x∗1), . . . ,m(x∗n)] for x
∗
i ∈ D∗

Given: data d = [d1, . . . , ds] at x1, . . . , xs for xi ∈ Dd
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Gaussian regression review

di = m(xi) + ηi

Goal: determine m∗ = [m(x∗1), . . . ,m(x∗n)] for x
∗
i ∈ D∗

Given: data d = [d1, . . . , ds] at x1, . . . , xs for xi ∈ Dd

◮ Assume m ∼ N (0, Cpr) (prior) and ηi ∼ N (0, σ2n)
◮ Cpr defined through covariance function c(x, y)

Absolute exponential
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Gaussian regression review

di = m(xi) + ηi

Goal: determine m∗ = [m(x∗1), . . . ,m(x∗n)] for x
∗
i ∈ D∗

Given: data d = [d1, . . . , ds] at x1, . . . , xs for xi ∈ Dd

◮ Assume m ∼ N (0, Cpr) (prior) and ηi ∼ N (0, σ2n)
◮ Cpr defined through covariance function c(x, y)

Absolute exponential
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Gaussian regression review

di = m(xi) + ηi

Goal: determine m∗ = [m(x∗1), . . . ,m(x∗n)] for x
∗
i ∈ D∗

Given: data d = [d1, . . . , ds] at x1, . . . , xs for xi ∈ Dd

◮ Assume m ∼ N (0, Cpr) (prior) and ηi ∼ N (0, σ2n)

 Joint multivariate distribution:
[

d

m∗

]
∼ N

(
0,

[
Cpr(Dd, Dd) + σ2nI Cpr(Dd, D

∗)
Cpr(D

∗, Dd) Cpr(D
∗, D∗)

])
,

where, e.g., Cpr(D
∗, Dd) ∈ R

n×s with [Cpr(D
∗, Dd)]ij = cSE(x∗i , xj)
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Gaussian regression review

di = m(xi) + ηi

Goal: determine m∗ = [m(x∗1), . . . ,m(x∗n)] for x
∗
i ∈ D∗

Given: data d = [d1, . . . , ds] at x1, . . . , xs for xi ∈ Dd

◮ Assume m ∼ N (0, Cpr) (prior) and ηi ∼ N (0, σ2n)

 Joint multivariate distribution:
[

d

m∗

]
∼ N

(
0,

[
Cpr(Dd, Dd) + σ2nI Cpr(Dd, D

∗)
Cpr(D

∗, Dd) Cpr(D
∗, D∗)

])
,

Bayesian inference  posterior m∗|d ∼ N (mpost,Cpost):

mpost = Cpr(D
∗, Dd)

[
Cpr(Dd, Dd) + σ2nI

]−1
d

Cpost = Cpr(D
∗, D∗)−Cpr(D

∗, Dd)
[
Cpr(Dd, Dd) + σ2nI

]−1
Cpr(Dd, D

∗)
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Gaussian regression – samples and variance
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Prior visualization

Prior:
m∗ ∼ N (0,Cpr(D

∗, D∗))
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Posterior visualization

Posterior:
m∗|d ∼ N (mpost,Cpost)
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OED for Gaussian regression
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◮ Can observe d at a limited number of locations of our choice

◮ How to choose these locations to optimally infer m∗?
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OED for Gaussian regression
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◮ Can observe d at a limited number of locations of our choice

◮ How to choose these locations to optimally infer m∗?

Requires:

1. Incorporation of design

2. Description of “optimal” design

3. Incorporation of cost constraints
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1. Definition and incorporation of design

Design definition is problem specific

For 1D Gaussian regression:

         

◮ Assume grid of s possible measurement locations, xi ∈ [a, b]

◮ Assign binary weight wi to measurement at location xi

wi =

{
1 =⇒ use measurement at xi

0 =⇒ ignore measurement at xi

◮ w = [w1, . . . , ws]
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1. Definition and incorporation of design

Design-dependent model:

d(w) = W (m+ η)

◮ W := W(w) ∈ R
k(w)×s:

[
d(w)
m∗(w)

]
∼ N

(
0,

[
W

(
Cpr(Dd, Dd) + σ2nI

)
WT WCpr(Dd, D

∗)

Cpr(D
∗, Dd)W

T Cpr(D
∗, D∗)

])
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1. Definition and incorporation of design

Design-dependent model:

d(w) = W (m+ η)

◮ W := W(w) ∈ R
k(w)×s:

[
d(w)
m∗(w)

]
∼ N

(
0,

[
W

(
Cpr(Dd, Dd) + σ2nI

)
WT WCpr(Dd, D

∗)

Cpr(D
∗, Dd)W

T Cpr(D
∗, D∗)

])

 design-dependent posterior:

m∗|d(w) ∼ N (mpost(w),Cpost(w))
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2. Description of “optimal” design

Goal: Choose measurement locations to minimize posterior “uncertainty”

◮ level of “uncertainty” measured by φ(w) := φ(Cpost(w))

w∗ = argmin
w∈{0,1}s

φ(w)
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2. Description of “optimal” design

Goal: Choose measurement locations to minimize posterior “uncertainty”

◮ level of “uncertainty” measured by φ(w) := φ(Cpost(w))

w∗ = argmin
w∈{0,1}s

φ(w)

◮ λ1(w) ≤ λ2(w) ≤ . . . ≤ λn(w) eigenvalues of Cpost(w)

Many choices for φ...

A-optimal: φA(w) = trace [Cpost(w)] =
∑n

i=1 λi(w)

D-optimal: φD(w) = det [Cpost(w)] =
∏n

i=1 λi(w)

E-optimal: φE(w) = λn(Cpost(w))
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3. Incorporation of cost constraints into optimization

w∗ = argmin
w∈{0,1}s

φA(w)

◮ Trivial solution: wi = 1 for i = 1, . . . , s
◮ Real-world applications, measurements often costly
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3. Incorporation of cost constraints into optimization

w∗ = argmin
w∈{0,1}s

φA(w)

◮ Real-world applications, measurements often costly

=⇒ introduce cost constraints:
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3. Incorporation of cost constraints into optimization

w∗
opt = argmin

w∈{0,1}s

s.t.
∑

s

i=1
wi=k

φA(w)

◮ Real-world applications, measurements often costly

=⇒ introduce cost constraints:

1. Direct combinatorial search  global optimal w∗
opt

◮ Requires
(
s
k

)
evaluations of φA(w) = trace [Cpost(w)]
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3. Incorporation of cost constraints into optimization

w∗
G ≈ w∗

opt = argmin
w∈{0,1}s

s.t.
∑

s

i=1
wi=k

φA(w)

◮ Real-world applications, measurements often costly

=⇒ introduce cost constraints:

1. Direct combinatorial search  global optimal w∗
opt

◮ Requires
(
s
k

)
evaluations of φA(w) = trace [Cpost(w)]

2. Greedy approach

◮ Simple to implement, less φA evaluations but still many, suboptimal
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3. Incorporation of cost constraints into optimization

w∗ = argmin
w∈[ 0,1 ]s

φA(w) + γψ(w)

◮ Real-world applications, measurements often costly

=⇒ introduce cost constraints:

1. Direct combinatorial search  global optimal w∗
opt

◮ Requires
(
s
k

)
evaluations of φA(w) = trace [Cpost(w)]

2. Greedy approach

◮ Simple to implement, less φA evaluations but still many, suboptimal

3. Relaxation + sparsification

◮ # of φA evaluations does not grow with # of sensors, gradients of φA

needed, indirect control of sparsity, suboptimal
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Choosing a design for Gaussian regression

Greedy
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Choosing locations one at a time is simple but suboptimal
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Choosing a design for Gaussian regression
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Choosing a design for Gaussian regression

Greedy
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Choosing a design for Gaussian regression

Greedy
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Choosing a design for Gaussian regression
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Infinite-dimensional Bayesian inverse problems
Introduce non-trivial parameter-to-observable map F : H → R

d

d = F(m) + η

◮ F : PDE solve + spatiotemporal observation operator
◮ m ∼ µ0 = N (0, Cpr), η ∼ N (0,Γnoise)

Goal: Infer posterior measure for m given indirect noisy measurements d



“OED for Bayesian inverse problems” by Karina Koval

Infinite-dimensional Bayesian inverse problems
Introduce non-trivial parameter-to-observable map F : H → R

d

d = F(m) + η

◮ F : PDE solve + spatiotemporal observation operator
◮ m ∼ µ0 = N (0, Cpr), η ∼ N (0,Γnoise)

Goal: Infer posterior measure for m given indirect noisy measurements d

Bayes’ rule  posterior law on m:

dµdpost

dµ0
∝ πlike(d|m), πlike(d|m) ∝ exp

[
−
1

2
‖F(m)− d‖2

Γ
−1

noise

]
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Infinite-dimensional linear Bayesian inverse problems
Introduce non-trivial parameter-to-observable map F : H → R

d

d = F m + η

◮ F : PDE solve + spatiotemporal observation operator
◮ m ∼ µ0 = N (0, Cpr), η ∼ N (0,Γnoise)

Goal: Infer posterior measure for m given indirect noisy measurements d

Bayes’ rule  posterior law on m:

dµdpost

dµ0
∝ πlike(d|m), πlike(d|m) ∝ exp

[
−
1

2
‖F m − d‖2

Γ
−1

noise

]

◮ For linear F , m|d ∼ N (mpost, Cpost) with

Cpost =
(
F∗Γ−1

noiseF + C−1
pr

)−1
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OED for infinite-dimensional Bayesian inverse problems

As before:

◮ Grid of s possible sensor locations for measurement collection at r
times =⇒ d = rs observations

◮ Differentiate between designs through (block-)diagonal W ∈ R
d×d

Other design definitions possible

Design enters through the likelihood:

πlike(d|m) ∝ exp

[
−
1

2
‖Fm− d‖2

Γ
−1

W

]

◮ Γ−1
W

depends on noise model

◮ For uncorrelated noise, e.g., Γnoise = σ2nI, Γ
−1
W

:= 1
σ2
n

W
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OED for infinite-dimensional Bayesian inverse problems

Design enters through the likelihood:

πlike(d|m) ∝ exp

[
−

1

2σ2n
‖Fm− d‖2W

]

 design-dependent posterior measure m|d(w) ∼ N (mpost(w), Cpost(w))

Cpost(w) =
(
σ−2
n F∗WF + C−1

pr

)−1
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Infinite-dimensional A-optimality criterion and challenges

◮ Infinite-dimensional A-optimality criterion defined by:

φA(w) = trace [Cpost(w)] = trace
[(
σ−2
n F∗WF + C−1

pr

)−1
]

Finding A-optimal designs is challenging:

◮ Requires many evaluations of φA

◮ Computing trace of ∞-dimensional, PDE-dependent operator

◮ Finding global or greedy optimal is too expensive



“OED for Bayesian inverse problems” by Karina Koval

Making OED computationally tractable
1. Approximate the trace

◮ Use randomized trace estimation

◮ Alternatively: reformulate φA to reduce dimensionality
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2. Eliminate PDEs

◮ Exploit low-rank structure of F

◮ Approximate F with truncated SVD using matrix-free algorithms
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Making OED computationally tractable
1. Approximate the trace

◮ Use randomized trace estimation

◮ Alternatively: reformulate φA to reduce dimensionality

2. Eliminate PDEs

◮ Exploit low-rank structure of F

◮ Approximate F with truncated SVD using matrix-free algorithms

3. Enforce sparse designs with sparsity-inducing penalty ψ

w∗ = argmin
w∈[0,1]s

φA(w) + γψ (w)

◮ ψ(w) ≈ ‖w‖0, the number of non-zero weights
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Making OED computationally tractable
1. Approximate the trace

◮ Use randomized trace estimation

◮ Alternatively: reformulate φA to reduce dimensionality

2. Eliminate PDEs

◮ Exploit low-rank structure of F

◮ Approximate F with truncated SVD using matrix-free algorithms

3. Enforce sparse designs with sparsity-inducing penalty ψε(i)

w∗
ε(i) = argmin

w∈[0,1]s
φA(w) + γψε(i)(w)

◮ ψ(w) ≈ ‖w‖0, the number of non-zero weights

◮ ℓ0-sparsification, ψε(i) → ‖ · ‖0 as i→ ∞
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Introduction and background
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OED for Bayesian inverse problems
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Mathematical formulation of OED
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Motivating example

Many models for real-world phenomena have uncertain inputs

Ex: Contaminant source identification in groundwater flow:

◮ Designs need to work well for all realizations of uncertainty
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OED under uncertainty

Common OED assumptions:

◮ exact knowledge of model equations

◮ no other sources of uncertainty

Aim of this work:

◮ Formulation of OED under irreducible uncertainty

◮ Mathematical structure and computational challenges
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OED for Bayesian linear inverse problems under uncertainty
Incorporate uncertainty into F , F : (Ω,G, P ) → L(H,Rd)

d(ξ) = F(ξ)m+ η

Likelihood depends on uncertainty:

πlike(d|m) ∝ exp

[
−

1

2σ2n
‖F(ξ)m− d‖W

2

]

=⇒ posterior depends on uncertainty:

µdpost = N (mpost(ξ,w), Cpost(ξ,w))

Cpost(ξ,w) =
(

1
σ2
n

F∗(ξ)WF(ξ) + C−1
pr

)−1
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A-optimal design under uncertainty

◮ A-optimal design under uncertainty:

w∗ = argmin
w∈[0,1]d

∫

Ω
trace [Cpost(ξ,w)]P (dξ) + γψ (w)

◮ Minimizes expected value of average posterior variance

◮ Uncertainty-aware designs do well on average, but are not optimal
given fixed ξ
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Computational challenges

1. Discretization of uncertainty

2. Efficient computation of trace

3. Tractable computation of optimal designs
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1. Discretization of the uncertainty

◮ Approximate the expected value of the average pointwise posterior
variance

◮ Assuming we can sample ξi ∈ Ω, we use SAA to approximate the
integral:

∫

Ω
trace [Cpost(ξ,w)]P (dξ) ≈

1

N

N∑

i=1

trace [Cpost(ξi,w)]
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2. Computation of trace, “measurement space approach”
Discretized trace (using, e.g., finite elements, F ≈ F ∈ R

d×n):

φA(ξ,w) ≈ φAn (ξ,w) = trace

[(
1

σ2n
F(ξ)∗WF(ξ) +C−1

pr

)−1
]

◮ Too expensive to compute trace exactly even after discretization
◮ We can rewrite φAn (ξ,w) as:

φAn (ξ,w) = trace [Cpr]− trace

[
1

σ2n
S−1(ξ,w)WF(ξ)C2

prF
∗(ξ)

]

= trace [Cpr]− trace [K(ξ,w)]
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2. Computation of trace, “measurement space approach”
Discretized trace (using, e.g., finite elements, F ≈ F ∈ R

d×n):

φA(ξ,w) ≈ φAn (ξ,w) = trace

[(
1

σ2n
F(ξ)∗WF(ξ) +C−1

pr

)−1
]

◮ Too expensive to compute trace exactly even after discretization
◮ We can rewrite φAn (ξ,w) as:

φAn (ξ,w) = trace [Cpr]− trace

[
1

σ2n
S−1(ξ,w)WF(ξ)C2

prF
∗(ξ)

]

= trace [Cpr]− trace [K(ξ,w)]

◮ Optimal design satisfies:

w∗ = argmin
w∈[0,1]d

[
− 1

N

∑N
i=1 trace [K(ξi,w)] + γψ (w)

]

Trace of an operator in measurement space (finite)



“OED for Bayesian inverse problems” by Karina Koval

3. Elimination of PDEs from the minimization

OEDUU objective is expensive to optimize:

1

N

N∑

i=1

trace [K(ξi,w)]

◮ K(ξi,w) depends on Fi and F∗
i

◮ Computing trace even for one ξi requires many PDE solves

◮ Need to compute trace for each sample ξi
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3. Elimination of PDEs from the minimization

Find a low-rank approximation to F(ξi)C
1

2

pr = F̃i

◮ Preconditioning promotes faster decay of eigenvalues

◮ Matrix-free techniques based on randomized linear algebra

Storing separate basis vectors for each F̃i is infeasible

◮ Solution: find a space that captures the “effective” composite range
space for all F(ξi)

Find Q ∈ R
d×k and Q̂ ∈ R

m×k (k small) such that ∀ i ∈ {1, . . . , N}:

F̃i ≈ QQ∗F̃iQ̂Q̂∗

Many ways to make this more efficient...
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Numerical example - subsurface flow OED

ΓL ΓO

ut − κ∆u+ v(ξ) · ∇u = 0 in D × (Ti, T )

u(·, Ti) = m in D

−κ∇u · n+ v(ξ) · nu = 0 on ΓL × (Ti, T )

κ∇u · n = 0 on ΓO × (Ti, T )

◮ Grid of 234 sensor locations, measurements taken at Tj ∈ {τ1, . . . , τr}

◮ Samples {v(ξi)}
N
i=1 of the velocity field and Ti ∼ U [−1, 1] of initial

time

 Find subset of locations minimizing A-optimal criterion under uncertainty

Spatial/temporal discretization: built on FEniCS and hIPPYlib
(open source Python/C++ framework)
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Subsurface flow OEDUU

w∗ = argmin
w∈[0,1]d

[
−

1

N

N∑

i=1

trace [K(ξi,w)] + γψ(w)

]

◮ N = 100 samples for discretization of uncertainty

◮ ℓ0-sparsification used to find sparse designs

◮ Each minimization solved with gradient-based method
(projected BFGS)
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Deterministic vs. designs under uncertainty

1 2 3 4 5 6 7 8 9
−3,500

−3,000

−2,500

−2,000

−1,500

Number of sensors

−
E
(t
r(
K
(ξ
,w

))

Deterministic OED

OEDUU with 100 samples
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Deterministic vs. designs under uncertainty

2 3 4 5 6 7 8 9 10

−3,500

−3,000

−2,500

−2,000
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−1,000

Number of sensors

−
tr
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(ξ
,w
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OEDUU mean

Deterministic OED mean
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Earthquake-generated tsunamis

Mainichi Shimbun/Reuters DigitalGlobe 

◮ Tsunamis generated by earthquakes beneath ocean floor at subduction
zones

◮ Water pressure/height readings are used to detect and track tsunamis
(DART system)

◮ Tsunami detection and warning relies on informative data
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Earthquake-generated tsunamis

d = G(B) + η
B ∼ N (Bpr, Cpr)

η ∼ N (0, σ2nI)

Governing equation for G:
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Goal: Find optimal configuration of sensors for inference of B
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Gaussian approximation to posterior distribution

SWE nonlinear =⇒

1. solutions can exhibit shocks

2. non-Gaussian posterior
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Gaussian approximation to posterior distribution

SWE nonlinear =⇒

1. solutions can exhibit shocks =⇒ difficulties for adjoint-based inversion
methods

2. non-Gaussian posterior =⇒ difficulties for OED problem
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Gaussian approximation to posterior distribution

SWE nonlinear =⇒

1. solutions can exhibit shocks =⇒ difficulties for adjoint-based inversion
methods

2. non-Gaussian posterior =⇒ difficulties for OED problem

Solutions well-approximated by linearization in deep water:

G(B) ≈ G(B0) + F [B −B0] , F := G′(B0)

Linearization  Gaussian approximation to posterior:

B|d ∼ N (Bpost(w), Cpost(w)) with

Cpost(w) =
(

1
σ2
n

F∗WF + C−1
pr

)−1
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Prior on B

Bathymetry change B̂ := B −B0 is due to a slip at a fault

◮ Okada model  linear relationship between slips S at m slip patches
and seafloor deformation

B̂ = OS

◮ Prior on slips S ∼ N (0, θ2I) induces prior on B ∼ N (B0, Cpr(O))

◮ Reasonable sample seafloor deformations
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Inversion for slips S

Exploiting linear relationship between S and B̂  

Reformulation of inverse problem:

d = G(B0) + FB̂ + η = G(B0) + FOS+ η

 finite-dimensional posterior distribution for slips S ∈ R
m:

S|d ∼ N (Spost(w),Cpost(w)) with

Cpost(w) =
(

1
σ2
n

O∗F∗WFO + θ−2I
)−1
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2D example - problem setup

◮ s = 189 possible locations

◮ r = 8 observation times

◮ m = 20 slip patches

◮ GeoClaw used for numerical results
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2D example - OED problem

w∗
G ≈ argmin

w∈{0,1}s

s.t.
∑

s

i=1
wi=k

trace

[(
1

σ2n
(FO)∗W(FO) + θ−2I

)−1
]

◮ FO ∈ R
d×m precomputed

◮ No adjoint solves needed
◮ Greedy optimal weight vectors computed, PDE free
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2D example - design comparisons

True bathymetry change Mean, optimal designMean, random design

Variance, optimal designVariance, random design Prior variance
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2D example - design comparisons

random designs
greedy optimal

global optimal
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Summary and future work

Summary:

1. OED under uncertainty:

◮ Introduced mathematical framework for incorporation of uncertainty

◮ Presented “measurement space approach” formulation of OED
objective

◮ Eliminated PDEs from minimization using joint basis

◮ Demonstrated effectiveness of OEDUU using numerical example
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Summary and future work

Summary:

1. OED under uncertainty:

◮ Introduced mathematical framework for incorporation of uncertainty

◮ Presented “measurement space approach” formulation of OED
objective

◮ Eliminated PDEs from minimization using joint basis

◮ Demonstrated effectiveness of OEDUU using numerical example

2. OED for tsunami source reconstruction:

◮ Formulated OED problem for deep-ocean tsunami source reconstruction
using SWE

◮ Used Gaussian approximation to posterior through linearization

◮ Reformulated problem to invert for slips allowing elimination of PDEs
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Summary and future work

Possible extensions:

◮ Alternate ways of dealing with uncertainty, e.g., stochastic
approximation or Taylor expansion

◮ Laplace approximation to posterior

◮ Inclusion of uncertain parameters into tsunami model

◮ Incorporate OED framework into GeoClaw
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Thank you!
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