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Motivation

d = F(m) + η

◮ Models for real-world phenomena involve unknown parameters, m

◮ Accurate estimation of parameters relies on informative data, d
(inverse problem)

◮ Data collection limited due to cost or physical constraints

◮ Optimal experimental design (OED):
Design of experimental conditions for parameter inference problems
governed by PDE – where and what to measure/observe?



“OED for Bayesian inverse problems” by Karina Koval

Contaminants in groundwater

Inverse problem:
Given concentration readings, infer source of contamination
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Contaminants in groundwater

Inverse problem:
Given concentration readings, infer source of contamination

OED problem:
Where to drill wells to optimally infer initial source in event of contamination

Graphic from sciencefriday.com
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Contaminants in groundwater - governing model

ut − κ∆u+ v · ∇u = 0

u(·, Ti) = m

+BCs

◮ u(x, t): concentration

◮ κ > 0: diffusion coefficient

◮ v(x, t): advection velocity field

◮ m: unknown initial concentration
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Earthquake-generated tsunamis

◮ Tsunamis generated by earthquakes beneath ocean floor

◮ Earthquake  ocean floor deformation  tsunami waves

◮ Tsunami warning relies on knowledge of bathymetry change

◮ Cannot measure this, but can measure water depth
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Earthquake-generated tsunamis

◮ Tsunamis generated by earthquakes beneath ocean floor

◮ Earthquake  ocean floor deformation  tsunami waves

◮ Tsunami warning relies on knowledge of bathymetry change

◮ Cannot measure this, but can measure water depth

Inverse problem: Given water level measurements, reconstruct ocean floor
deformation

OED problem: Place sensors for optimal tsunami source reconstruction and
accurate tsunami forecasting
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Earthquake-generated tsunamis - governing equations
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◮ h(x, y, t): water depth

◮ u(x, y, t) and v(x, y, t): fluid
momentum

◮ B(x, y): bathymetry

◮ Models wave propagation due to
bathymetry change

Seafloor deformation

(Simulations performed in GeoClaw)
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Gaussian process regression

Measure m(xi) directly at points xi
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Posterior visualization

di = m(xi) + ηi

◮ Goal: Determine
distribution for m(x)
given noisy data d ∈ R

s

◮ Gaussian process: probabilistic approach to regression problems

◮ Uses (noisy) data d to update prior knowledge about m
 posterior distribution
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Gaussian regression review

di = m(xi) + ηi

Goal: determine m∗ = [m(x∗1), . . . ,m(x∗n)] for x
∗
i ∈ D∗

Given: data d = [d1, . . . , ds] at x1, . . . , xs for xi ∈ Dd
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Gaussian regression review

di = m(xi) + ηi

Goal: determine m∗ = [m(x∗1), . . . ,m(x∗n)] for x
∗
i ∈ D∗

Given: data d = [d1, . . . , ds] at x1, . . . , xs for xi ∈ Dd

◮ Assume m ∼ N (0, Cpr) (prior) and ηi ∼ N (0, σ2n)
◮ Cpr defined through covariance function c(x, y)

Absolute exponential

0 0.2 0.4 0.6 0.8 1

x

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

m
(x

)

Squared exponential

0 0.2 0.4 0.6 0.8 1

x

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

m
(x

)

General

0 0.2 0.4 0.6 0.8 1

x

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

m
(x

)



“OED for Bayesian inverse problems” by Karina Koval

Gaussian regression review

di = m(xi) + ηi

Goal: determine m∗ = [m(x∗1), . . . ,m(x∗n)] for x
∗
i ∈ D∗

Given: data d = [d1, . . . , ds] at x1, . . . , xs for xi ∈ Dd

◮ Assume m ∼ N (0, Cpr) (prior) and ηi ∼ N (0, σ2n)
◮ Cpr defined through covariance function c(x, y)

Absolute exponential

0 0.2 0.4 0.6 0.8 1

x

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

m
(x

)

Squared exponential

0 0.2 0.4 0.6 0.8 1

x

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

m
(x

)

General

0 0.2 0.4 0.6 0.8 1

x

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

m
(x

)

cSE(x, y) = σ2 exp
(
−1

2
|x−y|2

l2

)



“OED for Bayesian inverse problems” by Karina Koval

Gaussian regression review

di = m(xi) + ηi

Goal: determine m∗ = [m(x∗1), . . . ,m(x∗n)] for x
∗
i ∈ D∗

Given: data d = [d1, . . . , ds] at x1, . . . , xs for xi ∈ Dd

◮ Assume m ∼ N (0, Cpr) (prior) and ηi ∼ N (0, σ2n)

 Joint multivariate distribution:
[

d

m∗

]
∼ N

(
0,

[
Cpr(Dd, Dd) + σ2nI Cpr(Dd, D

∗)
Cpr(D

∗, Dd) Cpr(D
∗, D∗)

])
,

where, e.g., Cpr(D
∗, Dd) ∈ R

n×s with [Cpr(D
∗, Dd)]ij = cSE(x∗i , xj)
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Gaussian regression review

di = m(xi) + ηi

Goal: determine m∗ = [m(x∗1), . . . ,m(x∗n)] for x
∗
i ∈ D∗

Given: data d = [d1, . . . , ds] at x1, . . . , xs for xi ∈ Dd

◮ Assume m ∼ N (0, Cpr) (prior) and ηi ∼ N (0, σ2n)

 Joint multivariate distribution:
[

d

m∗

]
∼ N

(
0,

[
Cpr(Dd, Dd) + σ2nI Cpr(Dd, D

∗)
Cpr(D

∗, Dd) Cpr(D
∗, D∗)

])
,

Bayesian inference  posterior m∗|d ∼ N (mpost,Cpost):

mpost = Cpr(D
∗, Dd)

[
Cpr(Dd, Dd) + σ2nI

]−1
d

Cpost = Cpr(D
∗, D∗)−Cpr(D

∗, Dd)
[
Cpr(Dd, Dd) + σ2nI

]−1
Cpr(Dd, D

∗)
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Gaussian regression – samples and variance
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Prior visualization

Prior:
m∗ ∼ N (0,Cpr(D

∗, D∗))
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Posterior visualization

Posterior:
m∗|d ∼ N (mpost,Cpost)
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OED for Gaussian regression
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◮ Can observe d at a limited number of locations of our choice

◮ How to choose these locations to optimally infer m∗?
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OED for Gaussian regression
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◮ Can observe d at a limited number of locations of our choice

◮ How to choose these locations to optimally infer m∗?

Requires:

1. Incorporation of design

2. Description of “optimal” design

3. Incorporation of cost constraints
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1. Definition and incorporation of design

Design definition is problem specific

For 1D Gaussian regression:

         

◮ Assume grid of s possible measurement locations, xi ∈ [a, b]

◮ Assign binary weight wi to measurement at location xi

wi =

{
1 =⇒ use measurement at xi

0 =⇒ ignore measurement at xi

◮ w = [w1, . . . , ws]
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1. Definition and incorporation of design

Design-dependent model:

d(w) = W (m+ η)

◮ W := W(w) ∈ R
k(w)×s:

[
d(w)
m∗(w)

]
∼ N

(
0,

[
W

(
Cpr(Dd, Dd) + σ2nI

)
WT WCpr(Dd, D

∗)

Cpr(D
∗, Dd)W

T Cpr(D
∗, D∗)

])
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1. Definition and incorporation of design

Design-dependent model:

d(w) = W (m+ η)

◮ W := W(w) ∈ R
k(w)×s:

[
d(w)
m∗(w)

]
∼ N

(
0,

[
W

(
Cpr(Dd, Dd) + σ2nI

)
WT WCpr(Dd, D

∗)

Cpr(D
∗, Dd)W

T Cpr(D
∗, D∗)

])

 design-dependent posterior:

m∗|d(w) ∼ N (mpost(w),Cpost(w))
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2. Description of “optimal” design

Goal: Choose measurement locations to minimize posterior “uncertainty”

◮ level of “uncertainty” measured by φ(w) := φ(Cpost(w))

w∗ = argmin
w∈{0,1}s

φ(w)
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2. Description of “optimal” design

Goal: Choose measurement locations to minimize posterior “uncertainty”

◮ level of “uncertainty” measured by φ(w) := φ(Cpost(w))

w∗ = argmin
w∈{0,1}s

φ(w)

◮ λ1(w) ≤ λ2(w) ≤ . . . ≤ λn(w) eigenvalues of Cpost(w)

Many choices for φ...

A-optimal: φA(w) = trace [Cpost(w)] =
∑n

i=1 λi(w)

D-optimal: φD(w) = det [Cpost(w)] =
∏n

i=1 λi(w)

E-optimal: φE(w) = λn(Cpost(w))
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3. Incorporation of cost constraints into optimization

w∗ = argmin
w∈{0,1}s

φA(w)

◮ Trivial solution: wi = 1 for i = 1, . . . , s
◮ Real-world applications, measurements often costly
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3. Incorporation of cost constraints into optimization

w∗ = argmin
w∈{0,1}s

φA(w)

◮ Real-world applications, measurements often costly

=⇒ introduce cost constraints:
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3. Incorporation of cost constraints into optimization

w∗
opt = argmin

w∈{0,1}s

s.t.
∑

s

i=1
wi=k

φA(w)

◮ Real-world applications, measurements often costly

=⇒ introduce cost constraints:

1. Direct combinatorial search  global optimal w∗
opt

◮ Requires
(
s
k

)
evaluations of φA(w) = trace [Cpost(w)]
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3. Incorporation of cost constraints into optimization

w∗
G ≈ w∗

opt = argmin
w∈{0,1}s

s.t.
∑

s

i=1
wi=k

φA(w)

◮ Real-world applications, measurements often costly

=⇒ introduce cost constraints:

1. Direct combinatorial search  global optimal w∗
opt

◮ Requires
(
s
k

)
evaluations of φA(w) = trace [Cpost(w)]

2. Greedy approach

◮ Simple to implement, less φA evaluations but still many, suboptimal



“OED for Bayesian inverse problems” by Karina Koval

3. Incorporation of cost constraints into optimization

w∗ = argmin
w∈[ 0,1 ]s

φA(w) + γψ(w)

◮ Real-world applications, measurements often costly

=⇒ introduce cost constraints:

1. Direct combinatorial search  global optimal w∗
opt

◮ Requires
(
s
k

)
evaluations of φA(w) = trace [Cpost(w)]

2. Greedy approach

◮ Simple to implement, less φA evaluations but still many, suboptimal

3. Relaxation + sparsification

◮ # of φA evaluations does not grow with # of sensors, gradients of φA

needed, indirect control of sparsity, suboptimal
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Choosing a design for Gaussian regression

Greedy
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Choosing locations one at a time is simple but suboptimal
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Choosing a design for Gaussian regression
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Choosing a design for Gaussian regression

Greedy
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Choosing a design for Gaussian regression

Greedy
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Choosing a design for Gaussian regression
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Infinite-dimensional Bayesian inverse problems
Introduce non-trivial parameter-to-observable map F : H → R

d

d = F(m) + η

◮ F : PDE solve + spatiotemporal observation operator
◮ m ∼ µ0 = N (0, Cpr), η ∼ N (0,Γnoise)

Goal: Infer posterior measure for m given indirect noisy measurements d
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Infinite-dimensional Bayesian inverse problems
Introduce non-trivial parameter-to-observable map F : H → R

d

d = F(m) + η

◮ F : PDE solve + spatiotemporal observation operator
◮ m ∼ µ0 = N (0, Cpr), η ∼ N (0,Γnoise)

Goal: Infer posterior measure for m given indirect noisy measurements d

Bayes’ rule  posterior law on m:

dµdpost

dµ0
∝ πlike(d|m), πlike(d|m) ∝ exp

[
−
1

2
‖F(m)− d‖2

Γ
−1

noise

]
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Infinite-dimensional linear Bayesian inverse problems
Introduce non-trivial parameter-to-observable map F : H → R

d

d = F m + η

◮ F : PDE solve + spatiotemporal observation operator
◮ m ∼ µ0 = N (0, Cpr), η ∼ N (0,Γnoise)

Goal: Infer posterior measure for m given indirect noisy measurements d

Bayes’ rule  posterior law on m:

dµdpost

dµ0
∝ πlike(d|m), πlike(d|m) ∝ exp

[
−
1

2
‖F m − d‖2

Γ
−1

noise

]

◮ For linear F , m|d ∼ N (mpost, Cpost) with

Cpost =
(
F∗Γ−1

noiseF + C−1
pr

)−1
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OED for infinite-dimensional Bayesian inverse problems

As before:

◮ Grid of s possible sensor locations for measurement collection at r
times =⇒ d = rs observations

◮ Differentiate between designs through (block-)diagonal W ∈ R
d×d

Other design definitions possible

Design enters through the likelihood:

πlike(d|m) ∝ exp

[
−
1

2
‖Fm− d‖2

Γ
−1

W

]

◮ Γ−1
W

depends on noise model

◮ For uncorrelated noise, e.g., Γnoise = σ2nI, Γ
−1
W

:= 1
σ2
n

W
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OED for infinite-dimensional Bayesian inverse problems

Design enters through the likelihood:

πlike(d|m) ∝ exp

[
−

1

2σ2n
‖Fm− d‖2W

]

 design-dependent posterior measure m|d(w) ∼ N (mpost(w), Cpost(w))

Cpost(w) =
(
σ−2
n F∗WF + C−1

pr

)−1
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Infinite-dimensional A-optimality criterion and challenges

◮ Infinite-dimensional A-optimality criterion defined by:

φA(w) = trace [Cpost(w)] = trace
[(
σ−2
n F∗WF + C−1

pr

)−1
]

Finding A-optimal designs is challenging:

◮ Requires many evaluations of φA

◮ Computing trace of ∞-dimensional, PDE-dependent operator

◮ Finding global or greedy optimal is too expensive
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Making OED computationally tractable
1. Approximate the trace

◮ Use randomized trace estimation

◮ Alternatively: reformulate φA to reduce dimensionality



“OED for Bayesian inverse problems” by Karina Koval

Making OED computationally tractable
1. Approximate the trace

◮ Use randomized trace estimation

◮ Alternatively: reformulate φA to reduce dimensionality

2. Eliminate PDEs

◮ Exploit low-rank structure of F

◮ Approximate F with truncated SVD using matrix-free algorithms
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Making OED computationally tractable
1. Approximate the trace

◮ Use randomized trace estimation

◮ Alternatively: reformulate φA to reduce dimensionality

2. Eliminate PDEs

◮ Exploit low-rank structure of F

◮ Approximate F with truncated SVD using matrix-free algorithms

3. Enforce sparse designs with sparsity-inducing penalty ψ

w∗ = argmin
w∈[0,1]s

φA(w) + γψ (w)

◮ ψ(w) ≈ ‖w‖0, the number of non-zero weights
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Making OED computationally tractable
1. Approximate the trace

◮ Use randomized trace estimation

◮ Alternatively: reformulate φA to reduce dimensionality

2. Eliminate PDEs

◮ Exploit low-rank structure of F

◮ Approximate F with truncated SVD using matrix-free algorithms

3. Enforce sparse designs with sparsity-inducing penalty ψε(i)

w∗
ε(i) = argmin

w∈[0,1]s
φA(w) + γψε(i)(w)

◮ ψ(w) ≈ ‖w‖0, the number of non-zero weights

◮ ℓ0-sparsification, ψε(i) → ‖ · ‖0 as i→ ∞



“OED for Bayesian inverse problems” by Karina Koval

Motivating examples

Introduction and background
OED for Gaussian regression
OED for Bayesian inverse problems

OED under model uncertainty
Mathematical formulation of OED
Computational challenges
Numerical results – subsurface flow

OED for tsunami source reconstruction
Mathematical formulation
Numerical results

Summary



“OED for Bayesian inverse problems” by Karina Koval

Motivating example

Many models for real-world phenomena have uncertain inputs

Ex: Contaminant source identification in groundwater flow:

◮ Designs need to work well for all realizations of uncertainty
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OED under uncertainty

Common OED assumptions:

◮ exact knowledge of model equations

◮ no other sources of uncertainty

Aim of this work:

◮ Formulation of OED under irreducible uncertainty

◮ Mathematical structure and computational challenges
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OED for Bayesian linear inverse problems under uncertainty
Incorporate uncertainty into F , F : (Ω,G, P ) → L(H,Rd)

d(ξ) = F(ξ)m+ η

Likelihood depends on uncertainty:

πlike(d|m) ∝ exp

[
−

1

2σ2n
‖F(ξ)m− d‖W

2

]

=⇒ posterior depends on uncertainty:

µdpost = N (mpost(ξ,w), Cpost(ξ,w))

Cpost(ξ,w) =
(

1
σ2
n

F∗(ξ)WF(ξ) + C−1
pr

)−1
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A-optimal design under uncertainty

◮ A-optimal design under uncertainty:

w∗ = argmin
w∈[0,1]d

∫

Ω
trace [Cpost(ξ,w)]P (dξ) + γψ (w)

◮ Minimizes expected value of average posterior variance

◮ Uncertainty-aware designs do well on average, but are not optimal
given fixed ξ
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Computational challenges

1. Discretization of uncertainty

2. Efficient computation of trace

3. Tractable computation of optimal designs
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1. Discretization of the uncertainty

◮ Approximate the expected value of the average pointwise posterior
variance

◮ Assuming we can sample ξi ∈ Ω, we use SAA to approximate the
integral:

∫

Ω
trace [Cpost(ξ,w)]P (dξ) ≈

1

N

N∑

i=1

trace [Cpost(ξi,w)]
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2. Computation of trace, “measurement space approach”
Discretized trace (using, e.g., finite elements, F ≈ F ∈ R

d×n):

φA(ξ,w) ≈ φAn (ξ,w) = trace

[(
1

σ2n
F(ξ)∗WF(ξ) +C−1

pr

)−1
]

◮ Too expensive to compute trace exactly even after discretization
◮ We can rewrite φAn (ξ,w) as:

φAn (ξ,w) = trace [Cpr]− trace

[
1

σ2n
S−1(ξ,w)WF(ξ)C2

prF
∗(ξ)

]

= trace [Cpr]− trace [K(ξ,w)]
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2. Computation of trace, “measurement space approach”
Discretized trace (using, e.g., finite elements, F ≈ F ∈ R

d×n):

φA(ξ,w) ≈ φAn (ξ,w) = trace

[(
1

σ2n
F(ξ)∗WF(ξ) +C−1

pr

)−1
]

◮ Too expensive to compute trace exactly even after discretization
◮ We can rewrite φAn (ξ,w) as:

φAn (ξ,w) = trace [Cpr]− trace

[
1

σ2n
S−1(ξ,w)WF(ξ)C2

prF
∗(ξ)

]

= trace [Cpr]− trace [K(ξ,w)]

◮ Optimal design satisfies:

w∗ = argmin
w∈[0,1]d

[
− 1

N

∑N
i=1 trace [K(ξi,w)] + γψ (w)

]

Trace of an operator in measurement space (finite)
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3. Elimination of PDEs from the minimization

OEDUU objective is expensive to optimize:

1

N

N∑

i=1

trace [K(ξi,w)]

◮ K(ξi,w) depends on Fi and F∗
i

◮ Computing trace even for one ξi requires many PDE solves

◮ Need to compute trace for each sample ξi
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3. Elimination of PDEs from the minimization

Find a low-rank approximation to F(ξi)C
1

2

pr = F̃i

◮ Preconditioning promotes faster decay of eigenvalues

◮ Matrix-free techniques based on randomized linear algebra

Storing separate basis vectors for each F̃i is infeasible

◮ Solution: find a space that captures the “effective” composite range
space for all F(ξi)

Find Q ∈ R
d×k and Q̂ ∈ R

m×k (k small) such that ∀ i ∈ {1, . . . , N}:

F̃i ≈ QQ∗F̃iQ̂Q̂∗

Many ways to make this more efficient...
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Numerical example - subsurface flow OED

ΓL ΓO

ut − κ∆u+ v(ξ) · ∇u = 0 in D × (Ti, T )

u(·, Ti) = m in D

−κ∇u · n+ v(ξ) · nu = 0 on ΓL × (Ti, T )

κ∇u · n = 0 on ΓO × (Ti, T )

◮ Grid of 234 sensor locations, measurements taken at Tj ∈ {τ1, . . . , τr}

◮ Samples {v(ξi)}
N
i=1 of the velocity field and Ti ∼ U [−1, 1] of initial

time

 Find subset of locations minimizing A-optimal criterion under uncertainty

Spatial/temporal discretization: built on FEniCS and hIPPYlib
(open source Python/C++ framework)
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Subsurface flow OEDUU

w∗ = argmin
w∈[0,1]d

[
−

1

N

N∑

i=1

trace [K(ξi,w)] + γψ(w)

]

◮ N = 100 samples for discretization of uncertainty

◮ ℓ0-sparsification used to find sparse designs

◮ Each minimization solved with gradient-based method
(projected BFGS)
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Deterministic vs. designs under uncertainty

1 2 3 4 5 6 7 8 9
−3,500

−3,000

−2,500

−2,000

−1,500

Number of sensors

−
E
(t
r(
K
(ξ
,w

))

Deterministic OED

OEDUU with 100 samples
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Deterministic vs. designs under uncertainty

2 3 4 5 6 7 8 9 10

−3,500

−3,000

−2,500

−2,000

−1,500

−1,000

Number of sensors

−
tr
(K

(ξ
,w

))

OEDUU mean

Deterministic OED mean
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Motivating examples

Introduction and background
OED for Gaussian regression
OED for Bayesian inverse problems

OED under model uncertainty
Mathematical formulation of OED
Computational challenges
Numerical results – subsurface flow

OED for tsunami source reconstruction
Mathematical formulation
Numerical results

Summary
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Earthquake-generated tsunamis

Mainichi Shimbun/Reuters DigitalGlobe 

◮ Tsunamis generated by earthquakes beneath ocean floor at subduction
zones

◮ Water pressure/height readings are used to detect and track tsunamis
(DART system)

◮ Tsunami detection and warning relies on informative data
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Earthquake-generated tsunamis

d = G(B) + η
B ∼ N (Bpr, Cpr)

η ∼ N (0, σ2nI)

Governing equation for G:



h

u

v




t

+




u
u2

h
+ 1

2gh
2

uv
h




x

+




v
uv
h

v2

h
+ 1

2gh
2




y

= −




0
ghBx

ghBy




Goal: Find optimal configuration of sensors for inference of B
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Gaussian approximation to posterior distribution

SWE nonlinear =⇒

1. solutions can exhibit shocks

2. non-Gaussian posterior
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Gaussian approximation to posterior distribution

SWE nonlinear =⇒

1. solutions can exhibit shocks =⇒ difficulties for adjoint-based inversion
methods

2. non-Gaussian posterior =⇒ difficulties for OED problem
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Gaussian approximation to posterior distribution

SWE nonlinear =⇒

1. solutions can exhibit shocks =⇒ difficulties for adjoint-based inversion
methods

2. non-Gaussian posterior =⇒ difficulties for OED problem

Solutions well-approximated by linearization in deep water:

G(B) ≈ G(B0) + F [B −B0] , F := G′(B0)

Linearization  Gaussian approximation to posterior:

B|d ∼ N (Bpost(w), Cpost(w)) with

Cpost(w) =
(

1
σ2
n

F∗WF + C−1
pr

)−1
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Prior on B

Bathymetry change B̂ := B −B0 is due to a slip at a fault

◮ Okada model  linear relationship between slips S at m slip patches
and seafloor deformation

B̂ = OS

◮ Prior on slips S ∼ N (0, θ2I) induces prior on B ∼ N (B0, Cpr(O))

◮ Reasonable sample seafloor deformations
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Inversion for slips S

Exploiting linear relationship between S and B̂  

Reformulation of inverse problem:

d = G(B0) + FB̂ + η = G(B0) + FOS+ η

 finite-dimensional posterior distribution for slips S ∈ R
m:

S|d ∼ N (Spost(w),Cpost(w)) with

Cpost(w) =
(

1
σ2
n

O∗F∗WFO + θ−2I
)−1
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2D example - problem setup

◮ s = 189 possible locations

◮ r = 8 observation times

◮ m = 20 slip patches

◮ GeoClaw used for numerical results
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2D example - OED problem

w∗
G ≈ argmin

w∈{0,1}s

s.t.
∑

s

i=1
wi=k

trace

[(
1

σ2n
(FO)∗W(FO) + θ−2I

)−1
]

◮ FO ∈ R
d×m precomputed

◮ No adjoint solves needed
◮ Greedy optimal weight vectors computed, PDE free
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2D example - design comparisons

True bathymetry change Mean, optimal designMean, random design

Variance, optimal designVariance, random design Prior variance
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2D example - design comparisons

random designs
greedy optimal

global optimal
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Summary and future work

Summary:

1. OED under uncertainty:

◮ Introduced mathematical framework for incorporation of uncertainty

◮ Presented “measurement space approach” formulation of OED
objective

◮ Eliminated PDEs from minimization using joint basis

◮ Demonstrated effectiveness of OEDUU using numerical example
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Summary and future work

Summary:

1. OED under uncertainty:

◮ Introduced mathematical framework for incorporation of uncertainty

◮ Presented “measurement space approach” formulation of OED
objective

◮ Eliminated PDEs from minimization using joint basis

◮ Demonstrated effectiveness of OEDUU using numerical example

2. OED for tsunami source reconstruction:

◮ Formulated OED problem for deep-ocean tsunami source reconstruction
using SWE

◮ Used Gaussian approximation to posterior through linearization

◮ Reformulated problem to invert for slips allowing elimination of PDEs
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Summary and future work

Possible extensions:

◮ Alternate ways of dealing with uncertainty, e.g., stochastic
approximation or Taylor expansion

◮ Laplace approximation to posterior

◮ Inclusion of uncertain parameters into tsunami model

◮ Incorporate OED framework into GeoClaw
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Thank you!
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