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Abstract

Merkel cells are cells located in the skin that are responsible for transducing a light touch into an
electrical signal used to communicate with the nervous system. Merkel cells generate action potentials
through the in- and out- flow of positively charged ions through protein channels. As experimental data
on these cells and their ion channels is relatively recent, the Merkel cell’s electrophysiological behavior
has yet to be modeled. This project aims to build a mathematical model that will capture action potentials
in response to an applied current or indentation. The model’s results are compared to experimental
measurements of a Merkel cell’s response to electrical and physical stimuli. We find that our model can
capture the qualitative behavior of a Merkel cell in response to stimulus.

1 Introduction

1.1 Biological Background on the Merkel Cell

Merkel cells are located in the skin just under the epidermis and are innervated by sensory neurons. In response
to light touch, Merkel cells fire action potentials that are used to communicate with neurons, ultimately
sending a message to the brain [1]. This message encodes information about the touch, including features
like texture and curvature [1]. The role of the Merkel cell is largely unknown, though scientists have some
evidence that Merkel cells are involved in texture discrimination and light touch sensation [2]. Furthermore,
pathological conditions in the Merkel cells can create numbness or extreme pain at light touch [3]. When
a force indents the surface of the skin, Merkel cells must translate the force into an electrical signal to
communicate with the coupled neurons.

Channels in the Merkel cell that respond to pressure, called Piezo2 protein channels, allow an influx
of nonspecific positively charged particles into the cell when they open (Fig. 1 (1)) [1]. The influx of ions
increases the potential across the cell membrane, prompting calcium channels to open, further depolarizing
the Merkel cell (Fig. 1 (2)) [4]. The calcium-driven action potential in the Merkel cell causes the release
of neurotransmitters to the gap between the Merkel cell and its afferent fiber [1]. With this signal from the
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Merkel cell, as well as its own depolarization from its own mechanoreceptive Piezo2 channels and calcium
channels, the afferent neuron begins to fire action potentials that eventually transmit information about the
touch to the brain [5–7].

Figure 1: (a) Schematic of the Merkel cell, with an attached neuron. The orange Piezo2 channels allow in
nonspecific cations; the red calcium channels allow calcium to flow in; the gray calcium-dependent potassium
channel and the green voltage-gated potassium channel allow potassium to exit the cell. (b) Merkel cell
activity during an action potential. The cell is at rest at -70 mV at t = 0 ms. A stimulus is applied at t = 25 ms,
causing Piezo2 channels to open and allow an influx of positive ions into the cell (1). In response to the
rising voltage, calcium channels open to allow calcium into the cell (2). At the peak of the action potential,
voltage-gated potassium channels open and allow positively-charged potassium to exit the cell, lowering the
membrane potential (3). The voltage-gated calcium channels close in response to the decreasing voltage (3).
Finally, calcium-gated potassium channels open, allowing more potassium to flow out of the cell and drive
the cell membrane potential down (4). Leak channels work to restore a resting potential of −70 mV.

In experiments, scientists attempt to understand the Merkel cell-neurite system by inhibiting the Merkel
cell, or ion channels involved in creating action potentials, and studying the subsequent response to a voltage
or pressure stimulus. By blocking calcium channels, which work to induce depolarization and generate action
potentials, they inhibit the Merkel cell’s depolarization. Under this treatment, neither the Merkel cell nor the
connected neuron fire action potentials [3]. A sodium channel inhibitor does not stop the cells from firing
action potentials, implying that a sodium current is not necessary to the working of the Merkel cell [3]. Mice
with genetically knocked out Piezo2 channels respond like wild-type mice to all stimulation except for a light
touch, where they do not respond at all, implying Piezo2 channels are necessary for the processing of this
type of stimulus [1]. At the cellular level, mechanosensitive response is not detected in Merkel cells that
did not develop Piezo2 protein channels, and the attached neuron fired a shorter burst of action potentials as
compared to wild-type cells [1, 5]. Finally, skin that did not develop Merkel cells at all similarly displays
a shorter sustained firing phase in the innervated neuron [4]. Researchers conclude that Merkel cells are
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sufficient for producing action potentials in neurons and necessary to the sustained phase of the firing activity
in the afferent neuron, and that they are particularly important in the sensation of light touch [1, 2, 4].

1.2 The Role of Protein Channels in Merkel Cells

Piezo2 channels are voltage- and pressure-gated channels that allow an influx of nonspecific positively
charged ions into the cell in response to a mechanical force; they are essential in transforming a physical
sensation into an electrical message [8, 9]. These channels are found in Merkel cells but not in other skin
cells [4, 7, 10], and they are found across different species, from humans to rodents to protists [4]. Piezo2
channels are necessary for mechanotransduction in the Merkel cell; without them, Merkel cells do not exhibit
action potentials [3]. In fact, in mice genetically engineered to develop Merkel cells without Piezo2 channels,
the electrical response to light touch displays a significantly altered firing pattern from wild type, implying
some characteristics of the touch are not correctly encoded [7, 10]. Thus, Piezo2 channels are thought to be
the main mechanism of mechanotransduction in Merkel cells [4, 7, 10].

In Merkel cells, calcium flow into the cell causes the increase in membrane potential that creates an action
potential. Merkel cells also have voltage and calcium gated potassium channels, called BKCa channels. When
a Merkel cell responds to touch, calcium channels open to allow an influx of positively charged calcium ions.
This triggers the opening of BKCa channels as the membrane potential rises and the cell depolarizes. The
potassium channels allow potassium ions to escape the cell and limit the amplitude of the calcium spikes,
but extend the duration of the calcium action potential. Potassium channels open and the outward flow of
positively charged potassium ions drives down the membrane potential and repolarizes the cell. Finally,
the influx of calcium into the cell triggers the internal release of calcium stores, called a Calcium Induced
Calcium Release. This internal release of calcium is thought to amplify the calcium signal, as it is similar to
calcium mediated neurotransmitter release in other types of cells [11].

1.3 Project Goals

In this project, our goal is to create a mathematical model to describe the electrical activity of the Merkel
cell. We plan to piece together equations for the Piezo2 channels, calcium channels, and various potassium
channels to create a Hodgkin Huxley-like model of the Merkel cell. Given an input of an external electrical
drive or an indentation, the model will generate action potentials that have a voltage trace comparable to
experiments.

2 Model

Previous models of touch sensation typically do not consider cellular level biology such as ion flow. Instead,
the model receives an input that signifies touch and outputs a spiking pattern that researchers compare to
the firing of attached neurons [6, 12–14]. Many of these models consider afferent neurons as the main sites
of mechanotransduction [6, 13]. Others consider the Merkel cell-neurite complex as a generator current
that elicits a response in the attached afferent neurons [14]. While these models make important strides in
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predicting the neuron’s response to touch and learning about the encoding of information in the pattern of
the action potentials, these previous models do not consider the Merkel cell’s response at the individual
scale [6, 12–14]. Here, we aim to model the Merkel cell’s electrical response to both electrical and physical
stimulation by considering the response of its ion channels.

2.1 The Merkel Cell Model

The model is based on a Hodgkin Huxley formulation, which we use because each term is easy to interpret and
has a clear biological meaning. A current across the cell membrane is written in the form Ix = gxmp

x hq
x(V −Ex)

for each ion x ∈ {Leak, K, Ca, CaK, Piezo2}. Here, g represents the maximal conductance of the given ion,
m is the probability of the activation gates of the channel being open, h is the probability of the inactivation
gates being open, V is the membrane potential, and E is the reversal potential, or the membrane potential
at which the given ion is at equilibrium. Calcium, potassium, calcium-dependent potassium, and Piezo2
channels each have their own terms of this form. The current across the cell membrane is the sum of all the
individual ion currents and an applied drive. This applied drive, denoted Idrive, is a step current that is either
zero or a constant in time. The total current is given by

C
dV
dt

=−ILeak− IK− ICa− ICaK− IPiezo2 + Idrive. (1)

2.2 Leak Current

The leak current, or the term that captures cell activity in the absence of external input, is given by

ILeak = gL(V −EL). (2)

As in the other current terms, gL is the maximal conductance of this channel and EL is the reversal potential.
Since the leak channels drive cell voltage towards rest, EL is chosen to be −70 mV. All parameters are found
in Table 1.

2.3 Potassium

The potassium current generated by vovltage-gated potassium channels is given by

IK = gKn4(V −EK). (3)

Here, gK is the maximal conductance of the potassium channel, n is probability the gate is open (Eq. 4), and
EK is the reversal potential of Potassium in the Merkel cell. Exact parameter values and their citations can be
found in Table 1.

The probability that the potassium channel is open is governed by

dn
dt

=
n∞−n

τn
, (4)
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where the steady-state activation is given by (modified from [15])

n∞ =
1

1+ exp
(
−(V−3)

12

) , (5)

and the timescale τn is

τn =
1

5(αn +βn)
.

Here, αn and βn are nonlinear rates of opening and closing of the potassium channel subunits. These potassium
activation gate rate equations are given by

αn =
0.02(−(V +10))

exp
(
−(V+10)

5 −1
) ,

βn = 0.5exp
(
−(V +20)

40

)
,

where αn is the opening rate of the potassium channel subunits and βn is their closing rate (modified
from [15]).

2.4 Calcium

Since the Merkel cell exhibits electrical spiking behavior due to the dynamics of calcium, the model assumes
some dependence on the calcium concentration inside the cell [16]. In particular, the calcium channel
inactivation gate (h, Eq. 12), the calcium-dependent potassium channel (mCaK , Eq. 17), and the calcium
reversal potential (ECa, Eq. 7) have terms dependent on calcium.

The calcium current through voltage-gated calcium channels is given by

ICa = gCam2
CahCa(V −ECa). (6)

The maximal conductance of the calcium channels is given by gCa, mCa is the calcium activation (Eq. 9), hCa

is the inactivation (Eq. 12), and ECa is the calcium reversal potential (Eq. 7) (parameters in Table 1).
In classical Hodgkin Huxley, the ion reversal potentials are taken to be constant. This implies that the

proportion of the ion’s concentration inside to the concentration outside the cell remains constant. However,
in cells that exhibit calcium spikes, the calcium activity is very dynamic, and it is unrealistic to take the
internal calcium concentration to be constant [16–18]. Thus in our model the calcium reversal potential is
also dependent on the internal calcium concentration [Ca], and is governed by the Nernst potential [17, 18]:

ECa = 1000
(

RT
zF

ln
(
[Ca]e
[Ca]

))
. (7)

The 1000 factor is a conversion factor from volts to millivolts, R is the ideal gas constant, T is the temperature
in Kelvins, z is the valence of calcium (which is 2), F is Faraday’s constant, [Ca]e is the external calcium
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Figure 2: A Merkel cell action potential generated by our model. The indentation is a step current that takes
a constant value of 3 µm for 25 ms < t < 100 ms and zero elsewhere. The maximal conductance gP is 3.
(left) A calcium-dependent reversal potential [16, 17] is plotted with the associated action potential. (right) A
constant calcium reversal potential ECa [15] is plotted with its associated action potential.

concentration (considered a constant), and [Ca] is the internal calcium concentration (Table 1) [16–18]. This
internal calcium concentration is governed by the equation

d[Ca]
dt

=−0.0002ICa−
[Ca]−0.00024

150
, (8)

where [Ca] is the calcium concentration inside the cell [15].
The calcium activation is governed by the equation

dmCa

dt
=

mCa∞−mCa

τmCa
, (9)

where

mCa∞ =
1

1+ exp
(
−(V+22.3)

10

) , (10)

and

τmCa = 1+(V +30)(0.014). (11)

Eq. 10 is from [16], and Eq. 11 from [15].

6



The calcium channel also has an inactivation variable described by the differential equation [16]

dhCa

dt
=

hCa∞−hCa

τh
. (12)

The steady-state activation is

hCa∞ = 0.15+
0.85

1+
(
[Ca]
khL

)3 , (13)

and the timescale is given by

τhCa = 11.5+
0.7

0.017
(

1+
(
[Ca]
khL

)3
) . (14)

Here, khL is a parameter that signifies the calcium concentration at which the probability of the h gate of
being open was 0.5; this value is chosen to be the calcium concentration where this occurs for our model
(Table 1) [16].

2.5 Calcium Dependent Potassium

The Merkel cell has potassium channels that are both voltage- and calcium- regulated. The total calcium-
dependent potassium current is given by

ICaK = gCaKmCaK(V −EK). (15)

The maximal conductance of the calcium-dependent potassium channel is gCaK , mCaK is the probability
that the activation gate is open (Eq. 16), and EK is the potassium reversal potential (Table 1).The calcium-
dependent potassium channels have only an activation variable

dmCaK

dt
=

mCaK∞−mCaK

τCaKm
, (16)

which is taken to be dependent on the internal calcium concentration [Ca] (Eq. 8), from [15]:

mCaK∞ =
[Ca]

[Ca]+2
, (17)

τCaKm =
100

[Ca]+2
.

2.6 Piezo2 Channels

The Piezo2 protein channels are mechanosensitive channels that respond to an input of indentation or force and
elicit an electrical current through the nonselective inward flow of positive ions. To model this mathematically,
we construct equations in a similar form as the other ion channels. The total Piezo current is given by

IPiezo2 = gPmP(V −EP). (18)
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The conductance gP is chosen to best reflect behavior shown in experiments [10]. The reversal potential EP is
chosen to be large and positive, to reflect the excitatory nature of Piezo2 channel activity. The exact values are
described in Table 1. The probability of the Piezo2 channel opening is described by the activation term mP:

dmP

dt
=

mP∞−mP

τP
.

Here, mP∞ is a function of an applied indentation d. This indentation d is considered on a scale of 0 - 5 µm,
where 0 µm signifies no indentation and the probability of the Piezo2 channels opening is 0. This range
is chosen because it is representative of ranges used in experiments, where scientists measure the Merkel
cell’s response to an applied indentation [10]. The probability of the channel opening reaches 1 at an applied
indentation of 5 µm [10]. In experiments, the Merkel cell begins generating an action potential at values of
indentation of about 2.5 µm [10]. Thus the probability of the Piezo2 channel being open is chosen to be 1

2 at
an indentation of 2.5 µm. To fit the steady-state activation mP∞ to experiments, we use a slope factor of 0.25,
which yields the following equations:

mP∞ =
1

1+ exp
(
−(d−3.5)

0.25

) , (19)

τP = 1.

All steady-state activation variables are graphed in Fig. 3.
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Name Value Eq. Reference
C 1 µF/cm2 1 [15]

gK 3 mS/cm2 1, 3 N/A

EK −95 mV 1, 3, 15 [15]

gL 0.15 mV 1, 2 N/A

EL −70 mV 1, 2 N/A

gCa 5 mS/cm2 1, 6 [16]

gCaK 5 mS/cm2 1, 15 N/A

gP 3 mS/cm2 1, 18 N/A

EP 55 mV 1, 18 N/A

khL 0.3 mM 13, 14 [16]

z 2 7 [16–18]

F 9.648 ·104 J/Kmol 7 [16–18]

R 8.314 C/mol 7 [16–18]

T 305.65 K 7 [16–18]

Cae 2.6 mM 7 [16]

Table 1: Parameters used in the model, as determined either in papers or fit as described in the Model section.
Choices of parameter with no citation are justified in the Discussion section.

2.7 Simulation and Parameters

After fitting together the ion channel equations as described above, the activation for each of the ion channels
behave as in Fig. 3. The steady-state probabilities of being open for the activation variables (n∞, mCa∞, mCaK∞,
mP∞) are zero at rest (low voltage, low internal calcium concentration, low indentation) and increase in the
probability of being open as their input variables increase. Conversely, h∞ is initially open and decreases its
probability of being open as the internal calcium concentration increases. The general form of these equations
is 1

1+exp V−x
k

, where x gives the value of the input (voltage, internal calcium concentration, indentation) at
which the probability of that gate being open is 0.5, and k controls the slope of the curve (form from [16]).

The applied external drive Idrive is a step function that is either 0µm/cm2 or some constant nonzero
value. Matlab’s fourth order Runge-Kutta time integrator, ode45, is used to solve the system of equations
to obtain a voltage trace by integrating Eq. 1 and all other coupled ODEs. Default settings of ode45
are used. Initial conditions provided to the integrator are 0 for all variables except for hCa(t = 0) = 1,
[Ca](t = 0) = 0.00024 mM, and V (t = 0) = −70 mV. This is done to ensure the Merkel cell begins the
simulation at a resting membrane potential and an internal calcium concentration of zero. Other parameters
can be found in the parameter table (Table 1).
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Figure 3: Plots of open probability associated with: the potassium channel as a function of voltage (Eq. 5),
the calcium channel as a function of voltage (Eq. 10), the calcium inactivation as a function of internal
calcium concentration (Eq. 13), the calcium-dependent potassium channel as a function of internal calcium
concentration (Eq. 17), and the Piezo2 channel as a function of indentation (Eq. 19). The voltage-dependent
equations are plotted for a span of −70 mV to 50 mV (Eqs. 5, 10); the internal calcium concentration-
dependent equations are plotted for calcium concentrations of 0 mM to 1 mM (Eqs. 17, 13), and the
indentation-dependent activation is plotted for a range of 0 µm to 5 µm (Eq. 19). p(open) indicates the
probability the given channel is open for a given input value. All ranges are seen in experiments.

3 Results

By solving Eq. 1 over time (in ms), we observe calcium spikes of similar wave form to those measured
experimentally (Fig. 4) [10]. The calcium action potential reaches a peak of about 20 mV, has a duration of
about 50 ms from its peak to its return to rest. The duration and amplitude of the spike were consistent with
measurements of real Merkel cells [3, 10]. The gating variables mCa (Eq. 9), hCa (Eq. 12), mCaK (Eq. 16), and
nK ( Eq. 4), are governed by differential equations of the form dx

dt =
x∞−x

τx
. Each of the activation variables
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x∞ are plotted in Fig. 3. The gating variables illustrate how calcium drives the voltage of the cell up quickly.
Potassium is activated with an increase in voltage, contributing to the sharp initial peak and the slow shut
down of the action potential, finally returning the cell to rest.

Figure 4: Single calcium-driven action potential and associated gating variables. The input drive was a
constant 5 µA/cm2 beginning at t = 50 ms. (top) The voltage trace of the resulting action potential. (bottom)
The calcium activating gate mCa (Eq. 9), calcium inactivating gate hCa (Eq. 12), the calcium dependent
potassium activation mCaK (Eq. 16), and the potassium channel activating gate nK (Eq. 4). Conductance gP

and indentation d are set to 0 to study the effect of an applied current.

The model’s action potential responds to an injected current similarly to the experimental setup in
Fig. 5a [10]. A step current was injected into the model as the Idrive parameter in Eq. 1; the applied current and
resulting voltage trace in time are shown in Fig. 5b. The current is 0 µA/cm2 until t = 25 ms, then instantly
turns on to a given drive value, and stays constant until time t = 75 ms, where it shuts back off to 0 µA/cm2.
The values of Idrive are chosen over a range such that the cell does not reach a spike threshold at the lowest end
of this range and spikes for higher values, so that ultimately the figure resembles the experiment [10]. At low
levels of injected current (Idrive < 1.6 µA/cm2), the Merkel cell does not fire an action potential. Similarly,
in experimental recordings of a Merkel cell, for low levels of injected current (input current < 15 pA), the
cell does not spike [10]. When the current is turned up higher, the cell does spike. This is an artifact of the
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Hodgkin Huxley formulation, as it results in an all-or-nothing response; the strength of the cell’s response
does not depend on the strength of the input. Since the drive current is simply an added constant in Eq. 1, it
adds to the rate at which the cell changes voltage. At low levels of input drive, once the cell has reached a
threshold voltage of −55 mV, the voltage-dependent gating variables take over and the cell commences its
action potential. Even when the current is turned off in the middle of the action potential, the action potential
is not interrupted, unlike in the experimental recording (Fig. 5a, [10]). Even when Idrive is increased further in
the model (Idrive = 20 µm/cm2), turning off the drive current during the action potential does lead to a more
dramatic decrease in voltage ( as seen in Fig. 5b). Unlike in Fig. 5a, these changes in the step of applied
current are not uniform.

Figure 5: (a) Experimental measurements of a Merkel cell’s membrane potential response to an applied
electrical step current as measured in Woo et al., 2014 [10]. The applied current, in pA (top) and the Merkel
cell’s measured response (bottom) are recorded over a period of about 200 ms. (b) The model response to
different magnitudes of step current. The current is applied for 50 ms, from t = 25 ms to t = 75 ms (top). The
maximal conductance of the Piezo2 channel, gP, is set to zero here, to observe only the response of the cell to
a constant drive and no pressure (bottom). The mode cell reaches resting potential (−70 mV) on a timescale
of hundreds of ms after firing (see Fig. 4).

In Fig. 5, the experimental measurements in literature [10] are noisier than the behavior exhibited by the
model, as the model does not include any noise. Furthermore, once the cell’s voltage passed a threshold of
about −55 mV in the simulation, cutting out the external Idrive did not work to cease the activity of the action
potential, unlike in the experimental response (Fig. 5a) [10]. This is due to the dependence of the action
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potential on the gating variables, and the gating variables’ strong response to the membrane potential and the
internal calcium concentration.

Figure 6: (a) The experimentally measured response of the Merkel cell (in mV, bottom panel) to a given
indentation (in µm, top panel) [10]. (b) Comparable reactions of the model to input step current. The
indentation d (Eq. 19), in µm, is plotted in the top panel; the corresponding current due to the Piezo channel
term (Eq. 18 in the middle panel, and the resulting voltage trace, in mV, in the final panel. The indentation
was set to 0 until 25 ms, then was on at a constant value for 50 ms, and turned back off to 0 at t = 75 ms.

Merkel cells’ response to a constant indentation have also been measured experimentally [10]. In these
experiments, a constant indentation of about 2 µm to 4 µm was applied to the cell for a time period of about
150 ms [10]. The cell did not fire at the two lowest values of this indentation (as seen in Fig. 6). Once the
indentation magnitude passed the firing threshold of about −55 mV, the cells fired immediately when the
indentation was applied [10]. When the applied force ceases, the cell’s voltage slowly trails off (Fig. 6a), in
contrast to the cell receiving an input current but no indentation (Fig. 5a).

To replicate the cell’s response to indentation rather than an applied current, we create a Piezo2 channel
term in the Hodgkin-Huxley format (Eqs. 19, 18). This term replaces Idrive, where an input of indentation
(d) in µm takes the place of a constant drive. The IPiezo2 term takes this applied force and transforms it
into an excitatory current similarly to how Piezo2 protein channels have been reported to behave in the
cell [4, 10, 19, 20]. The values of d necessary to elicit spiking or non-spiking behavior in the model cell
are similar to those of Woo et al., 2014 [10]. The model cell does not spike at values of d < 2.5 µm, as
Eq. 19 is constructed such that Piezo2 channels have a probability of 0.5 to be open at d = 2.5 µm. The
model cell does spike for higher values. Unlike in-vitro measurements, the model does not exhibit the trailing
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voltage decay after the applied force was turned off. The model’s action potential is on the same timescale
as the experimental measures, and it either spikes or does not spike for similar values of d as measured
experimentally.

4 Discussion and Future Work

In this project, I extend the Hodgkin Huxley model to encompass the electrophysiological behavior of a
Merkel cell. In order to do this, the behavior of calcium in the cell must be incorporated in the Hodgkin
Huxley system of equations. The calcium current depends on an activation variable, an inactivation variable,
a conductance, and a calcium-dependent reversal potential. The calcium dynamics are pieced together from
two different papers, where Patel et al., 2013 modeled a locust’s antennal lobe and Felix-Martinez et al.,
2015 studied the modeling of calcium current in the pancreas. The reversal potential is chosen to be calcium
dependent because the ratio of calcium concentration outside the cell to the concentration inside the cell cannot
be considered a constant [16,17]. If it were to be considered constant, we would take ECa = 140 mV [15]. As
seen in Fig. 2, the dynamic calcium reversal potential is siginficantly different from a constant excitatory
potential.

The Piezo2 channel equations are chosen so that the membrane potential will respond in the same way
as experiments. In Woo et al., 2014, the Merkel cell’s response is measured in response to an indentation
on a scale of about 2 µm to about 4 µm (see Fig. 6a)). Initially, the value of d where the probability of this
channel being open is 0.5 is set to be d = 2.5. However, in order to elicit the pattern we see in literature using
this midpoint, we must set gP to be 0.08 mS/cm2. As we can see in Table 1, maximal conductance values
for other ion channels range from 3 mS/cm2 to 5 mS/cm2. Thus, to be more representative of physical ion
channels, we choose gP = 3 mS/cm2 and shifted the activation variable to have a probability of being open of
0.5 at a value of d = 3.5 µm, so that we obtain the same qualitative response to indentation as experiments.
After adjusting the slope factor so that the probability of the gate being open is zero at d = 0 µm, we are left
with Eq. 19. The potassium reversal potential is also adjusted (Table 1) to be of the same order of magnitude
as this current. The leak conductance gL is chosen so that a cell at rest with no applied current or indentation
will stay at rest, and the leak current reversal potential EL is chosen to be −70 mV so that the leak current
drives the voltage towards rest. The calcium-dependent conductance gCaK is chosen to be of the same order of
magnitude as the calcium conductance gCa. These values are chosen so that we see spiking behavior when we
apply an appropriate input. In the calcium equations, khL is defined as the concentration of internal calcium at
which the probability of the calcium inactivation gate hCa∞ is 0.5 [16]. Based on this definition, the value of
khL is chosen for our model using our own gating variable simulations. Finally, the Piezo2 channel reversal
potential EP is chosen as large and positive at 55 mV . This value signifies the Piezo2 current is driving the
voltage up towards 55 mV and reflects the excitatory nature of the channel’s behavior. There are several
differences between the response of an action potential we obtain from the model as compared to an action
potential measured in a Merkel cell. In Fig. 5, the model’s response to an applied current with no activity from
the Piezo2 channel is compared to experimental measures of a Merkel cell in response to an applied drive.
Unlike in experiments, we are unable to obtain the trailing voltage trace once the applied current is turned
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off; the gating variables driving the voltage trace are dependent on membrane potential, internal calcium
concentration, or time. They are not dependent on the external applied drive, and thus the membrane potential
does not react strongly to shutting off the drive. However, the length of the action potential is comparable to
literature (about 50 ms, on the same order of magnitude as [10]). Furthermore, the amplitude and the shape
of the action potential are similar to literature [10]. Finally, steepness of the slope in membrane potential
increases as the magnitude of the input increases, as in [10].

We also compare our cell’s response to indentation to the measured response in a Merkel cell in Fig. 6.
Here we encounter two differences between the model and experiments. First, in experiments, the amplitude
of the action potential increases as the magnitude of the indentation increases. We are unable to replicate this
behavior in the model due to the formulation of the model. Hodgkin Huxley is an all-or-nothing model, and
the magnitude of the response does not depend on the magnitude of the stimulus. The qualitative spiking/non-
spiking behavior in the model is similar to that of experiments [10]. Second, unlike in experiments, the model
does not exhibit the trailing voltage trace after the indentation is stopped. This is due to the way the calcium
and potassium ion channels are described mathematically; their probabilities of opening and closing are
dependent on voltage and calcium concentration. The calcium gating variable mCa timescale governs the
duration of the action potential, and it is dependent only on membrane potential V , which is governed by
the gating variables once it crosses the threshold. However, the length of the action potential as well as its
general shape are similar as in [10].

In the future, we would like to address these limitations. First, we would like to see if adjusting the shape
of the gating variables would change the shape of the action potential in response to a stimulus. For example,
currently, the timescale of the action potential is almost entirely dependent on the calcium activation variable
mCa (see Fig. 4). We hope that readjusting the gating variables so that the timescale is dependent on the
intersect between mCa, hCa, and nK , as in the neuronal Hodgkin Huxley model, rather than just on mCa, would
create a more realistic description of the Merkel cell’s behavior.

Furthermore, we know there are other processes influencing the membrane potential in the Merkel cell
that we have not modeled. One such process is calcium-induced calcium release (CICR). We know that
Merkel cells have internal stores of calcium in the cell. When calcium channels open and calcium flows into
the cell, the cell releases these stores to increase the internal calcium concentration [11]. The purpose of this
mechanism in the Merkel cell is unclear; some hypothesize that it is meant to amplify the magnitude of the
Merkel cell’s response, or that it is used to trigger the release of neurotransmitter to communicate with the
afferent neuron [11]. We hope that by including it in our model, we could provide evidence for one of these
theories.

We also hope to investigate the coupling between the Merkel cell and the afferent neuron. From past
works, we know that Merkel cells release neurotransmitters to the afferent neurons to communicate [3–5, 7].
We hope that by modeling the afferent neuron and its connection to the Merkel cell, we can learn something
about how these cells communicate.
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6 Supplementary Information

Figure S1: These figures are used to study the pre-threshold behavior of the Merkel cell model by modifying
reversal potential and conductance values by 25 and 50 percent. An indentation of 2µm is applied at t = 25 ms
and is constant until the end of the simulation. Unless modified for that plot, all parameter values are as in
Table 1.

Figure S2: These figures are used to study the spiking behavior of the Merkel cell model by modifying reversal
potential and conductance values by 25 and 50 percent. An indentation of 3µm is applied at t = 25 ms and is
constant until the end of the simulation. Unless modified for that plot, all parameter values are as in Table 1.
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Figure S3: (top) a voltage trace of a Merkel cell from our model. The conductance gP is chosen to be 3mS/cm2.
An indentation of 4µm is applied at 25 ms, and is constant until 75 ms. The voltage trace after the indentation
is removed is convex because an indentation creates a current on an order of magnitude of −100mS/cm2,
which is much higher than any applied current and overloads the cell. Thus when the indentation is removed,
the cell’s voltage trace follows the given path as the membrane potential is still high. (middle) The gating
variables for this plot. The mPiezo variable trace follows the shape of the applied indentation. (bottom) Each
ion channel current. The potassium currents are positive, which drives down the voltage (since the membrane
potential is a subtraction of currents), and the calcium and Piezo2 currents are negative, indicating a positive
effect on the voltage. These currents are investigated to check that they are of the same order of magnitude, or
are balanced in the cell.
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