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Overview of Topics

1. Numerical Optimization

3. Hydrodynamics

4. Non-equilibrium Self 

Assembly

Colloids

2. Equilibrium Self 

Assembly



Colloids - What are they?
● Particles, typically around 100nm - 1 micron in 

diameter, dispersed in a fluid.  

○ Everyday Examples: Milk, Jam, Clouds, Paint

Manoharan, 2015. Colloidal Matter.

● Why are they interesting?

○ Size!

■ Small enough and big enough

○ Exhibit interesting phenomena

■ “Big Atoms”

■ Self-Assembly



Applications of Self-Assembly
Self Assembly:

Spontaneous organization of a collection of 
individual units into a well-defined structure, 
without human (external) intervention.

Oleg Gang. Nature, 2016 Greer Lab, CalTech 2020

Amino Acids Peptide Protein



Model Self-Assembling System - Colloidal Chains

Big Questions:

1) How do we model this system?

2) How important are hydrodynamic 
interactions?

3) How can we design this system to 
form a desired target state, both 
quickly and with high yield?

Movie courtesy of Solomon Barkley, 
Manoharan Lab, Harvard. 

https://docs.google.com/file/d/1GHA4O4UpyKpjueIjbFf5H9xygT23gAfP/preview


How do colloids interact?

What goes into             ?
● Excluded Volume - Short range repulsive
● Electrostatics - Long range attractive/repulsive
● Van der Walls - Short range attractive
● Steric - Short range attractive/repulsive
● Selective DNA bonds - Short range attractive
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Canonical Potentials

How does the choice of potential 
affect the interactions? What 
about parameters?



Sticky Limit

In this limit, both potentials become delta 
functions at the particle diameter.  

Enumerated for small enough N by [Arkus 2011, Hoy 
2012, Holmes-Cerfon 2017]. 

The local minima of potential energy become 
clusters with a maximal number of contacts. 



Numerical Continuation Algorithm
● Begin with set of SHS clusters

● Choose initial potential mimicking a 

delta function (Morse/LJ, Range 50)

● Minimize potential energy (CG/BFGS)

● Decrease ρ by 0.01, set E such that κ 

remains constant. 

● Perform energy minimization with 

previous cluster as the initial guess.

● Output clusters

● Stop when  ρ=1

Loop

Perform for both Morse and LJ potentials, for 3 

different κ values. 



Results - 6 and 7 Sphere Clusters



Results - 9 Sphere Clusters



Conclusions on Interaction Potentials
● As long as interactions are sufficiently short-ranged, the choice of potential does 

not appreciably affect the potential energy landscape.

● Models going forward will assume a Morse potential with range parameter 40, 

which is above the range in which the first bifurcation occurs for up to 10 

particles. 



Equilibrium Self-Assembly of 6 Disk Chains



Bond Counting
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High Equilibrium Yield Design?



Does it work?

● Simulate with Brownian Dynamics
○ Close-ranged Morse Potential

● Only about 50% yield after 8 hours 
(real time)
○ Extrapolating the rate, 90% 

yield will take ~40-50 hours

● Why? Kinetic trapping by Chevron
○ Time scale for breaking 

Red-Red bond ~ exp(E)



Incorporating Kinetics - Markov Model



Forward Rate Estimation
Use Reflecting Brownian Dynamics to sample 

the exit time out of state i, and keep counts of 

the number of times state j is visited. 

State i State j
t1

t2

t3

t4

Mean First Exit Time:

Transition Probability:

Transition Rate: Independent of 
Interaction Strengths!



Backward Rates
● Estimating the rate of bond breakage 

is hard. 
○ Instead, invoke detailed balance

● Reweighting Scheme:

● Equilibrium probabilities at the reference value are estimated exactly in the 
sticky limit via an MCMC on manifolds algorithm. [Zappa, Holmes-Cerfon, 
Goodman, 2017]



Markov Chain Model Outputs 
1. Equilibrium Probabilities for each 

ground state
a. Must be estimated once for one parameter 

set.
b. Re-weighting scheme allows fast 

computation for any parameter set.

2. Average transition rates to each 
ground state. 
a. Can be computed using the transition rate 

matrix, T, by solving a linear system. 



Markov Model Output - Triangle, 2 Types

Pareto front:
No objective can be increased 
without decreasing another

Tradeoff! Compute                for many 

different choices of 



Genetic Algorithm for Computing Pareto Fronts 

https://docs.google.com/file/d/1M1H4D829OecXH24x7wVPtoKcRRXHqF1m/preview


Determining the Minimum Number of Species

● Allow particle species to be an 
inheritable property for the 
genetic algorithm.

● Fix number of types as m. 
Increase m until assembly 
efficiency is comparable to m=6.

● Nearly vertical fronts -> tradeoff 
eliminated!



Applying to Other Structures



Verification through Simulation

● Perform 400 Brownian dynamics 

simulations using optimal triangle 

parameters determined by the 

genetic algorithm. 

● Similar dynamics for 3 and 6 types, 

but why only 50% yield?

● Model drawback: lumping by 

adjacency matrix.

● Takeaway: 100% yield is not 

possible with isotropic interactions. 



Conclusions on Equilibrium Self-Assembly
● I used a coarse-grained Markov model along with a genetic algorithm to identify 

thermodynamic-kinetic tradeoffs for the self assembly of colloidal chains. 

● By constructing Pareto fronts, I was able to determine the minimal design 

complexity to achieve assembly that is as efficient as possible, within the confines 

of isotropic interactions. 

● Brownian dynamics simulations showed we cannot achieve yields near 1 with 

isotropic interactions; orientation dependent interactions are necessary. 

○ A possibility for future work is to come up with a sampling approach to identify these tradeoffs, 

which would naturally capture the traps neglected by this model. 



Brownian Dynamics (Plus Hydrodynamics)

3 Choices for the Mobility Matrix:

Stochastic Drift Brownian IncrementDet. Drift

1) Identity -> Typical Brownian Dynamics
2)    Far-field Hydrodynamic Interactions (RPY Tensor)
3)    Far-field + Short-Ranged Lubrication Corrections [1] 

[1] Brennan Sprinkle, Ernest B. van der Wee, Yixiang Luo, Michelle Driscoll, and Aleksandar Donev. Driven
dynamics in dense suspensions of microrollers. Soft Matter, 16:7982 – 8001, 2020.



Comparing Simulation Yields

● Hydrodynamics has a 
noticeable effect on the 
ground state yields. 

● Note: Sample size still too 
small to choose a “best” 
model.

● Also have access to full 
trajectory information.
○ How else can we compare 

simulation results?

 BD trajectories courtesy of Andreas Neophytou, University of Birmingham.



Effect of Hydrodynamics on Pathways

Most Probable Path:

Probability Distribution of 1-bonded states:



Distribution of Dwell Times



Comparing First Hitting Time Distributions

● Compare actual clusters 
via an order parameter. 
Ex: Radius of Gyration

● Simulations with lubrication 
forces favor more compact 
structures at first bond time.

● Could be result of increased 
time until bond formation? 



Conclusions on Hydrodynamics 
● We performed hydrodynamics simulations of the self assembly of 7-disk colloidal 

chains and compared to experiment and plain BD.

○ Hydrodynamics had a non-negligible effect on ground state yields, potentially due to the 

suppression of triangle formation at the end of the chain. 

○ More data is necessary to make a comparison among models. 

● Short-ranged hydrodynamics led to an increase in the time for bond formation

○ A possible explanation is an additional effective energy barrier for bond formation induced by 

lubrication. This warrants further study.

● The dynamics with short-ranged lubrication were found to be sensitive to the pair 

potential. 

○ Simulation would benefit from an in-depth study of the pair potential between colloids.



Non-Equilibrium Protocols for Colloidal Self-Assembly
● Equilibrium self-assembly is typically plagued by thermodynamic-kinetic tradeoffs

● Tradeoffs can be eliminated by increasing the complexity of the design space.

● Alternative: introduce a non-equilibrium driving to facilitate assembly

○ Example: a time-dependent temperature for a folding experiment

○ Bond strength depends sensitively on temperature

○ Rates are now implicitly characterized by the experimental time

○ Potentially more experimentally accessible than creating more particle types



Idealized Non-Equilibrium Assembly Example



Time-Dependent Protocol Optimization 

Goal: Approach: 



Time-Dependent Protocol Optimization - Adjoint Algorithm
Primal Equation: Adjoint Equation:

Time Derivative of Inner Product:



Dissipative Penalty Term
● Protocols may develop steep gradients or fast oscillations

○ Potentially unrealizable in a physical experiment. Ex: Instantaneous temperature control

● Introduce penalty term to favor smooth solutions

● Gradient descent update then becomes equivalent to solving a heat equation with 

source term in some artificial optimization time, 𝜏. Use Neumann BCs. 



Assembling the Parallelogram



Assembling Other 6-Disk Clusters



Conclusions on Non-Equilibrium Self-Assembly
● I’ve presented a method for computing an optimal time dependent protocol to maximize 

the probability of a target state, for dynamics governed by a Markov jump process. 

○ Applying the algorithm to the self-assembly of 6-disk chains, we found protocols to form each ground state 

with high yield, including a previously known procedure for the parallelogram.

○ The transition matrix is constructed under the same assumptions as for the equilibrium self-assembly 

problem, so the same issues are present regarding isotropic interactions.

● We have also derived an analogous adjoint algorithm for dynamics governed by an SDE. 

In this case, we also have a formula to approximate gradients by sampling for higher 

dimensional problems. 

○ Still need to apply it to test problems and compare to other methods. Ex: CMA-ES, Miskin Optimizer



Thank You!


