Modeling and Overcoming Thermodynamic-Kinetic Tradeoffs for Self-Assembling Colloidal Chains

 $\bullet \bullet \bullet$

Anthony Trubiano Thesis Defense April 29th, 2021

Overview of Topics

1. Numerical Optimization

2. Equilibrium Self Assembly

Colloids

3. Hydrodynamics

4. Non-equilibrium Self Assembly

Colloids - What are they?

- Particles, typically around 100nm 1 micron in diameter, dispersed in a fluid.
 - Everyday Examples: Milk, Jam, Clouds, Paint

- Why are they interesting?
 - Size!
 - Small enough and big enough
 - Exhibit interesting phenomena
 - "Big Atoms"
 - Self-Assembly

Manoharan, 2015. Colloidal Matter.

Applications of Self-Assembly

Self Assembly:

Spontaneous organization of a collection of individual units into a well-defined structure, without human (external) intervention.

Greer Lab, CalTech 2020

Model Self-Assembling System - Colloidal Chains

Big Questions:

- 1) How do we model this system?
- 2) How important are hydrodynamic interactions?
- 3) How can we design this system to form a desired target state, both quickly and with high yield?

Movie courtesy of Solomon Barkley, Manoharan Lab, Harvard.

How do colloids interact?

$$dX_t = -rac{D}{k_BT}
abla U(X_t)dt + \sqrt{2D}dW_t$$

What goes into $U(X_t)$?

- Excluded Volume Short range repulsive
- Electrostatics Long range attractive/repulsive
- Van der Walls Short range attractive
- Steric Short range attractive/repulsive
- Selective DNA bonds Short range attractive

Canonical Potentials

$$egin{split} U_M(r) &= E\left(e^{-2
ho(rac{r}{d}-1)}-2e^{-
ho(rac{r}{d}-1)}
ight),\ U_{
m LJ}(r) &= rac{E}{m}igg(migg(rac{d}{r}igg)^{2m}-2migg(rac{d}{r}igg)^migg) \end{split}$$

 $E = {
m Well \; Depth} \
ho, m \sim {
m Well \; Width}$

How does the choice of potential affect the interactions? What about parameters?

Sticky Limit

Take the limit as $E
ightarrow \infty$ and $ho
ightarrow \infty$ with

$$\kappa = \sqrt{rac{\pi}{eta E
ho^2}} e^{eta E} = c ext{ fixed} \, .$$

In this limit, both potentials become delta functions at the particle diameter.

The local minima of potential energy become clusters with a maximal number of contacts.

Enumerated for small enough N by [Arkus 2011, Hoy 2012, Holmes-Cerfon 2017].

Numerical Continuation Algorithm

- Begin with set of SHS clusters
- Choose initial potential mimicking a delta function (Morse/LJ, Range 50)
- Minimize potential energy (CG/BFGS)
- Decrease ρ by 0.01, set E such that κ remains constant.
- Perform energy minimization with previous cluster as the initial guess.
- Output clusters
- Stop when $\rho=1$

Perform for both Morse and LJ potentials, for 3 different κ values.

Results - 6 and 7 Sphere Clusters

Results - 9 Sphere Clusters

Conclusions on Interaction Potentials

• As long as interactions are sufficiently short-ranged, the choice of potential does not appreciably affect the potential energy landscape.

• Models going forward will assume a Morse potential with range parameter 40, which is above the range in which the first bifurcation occurs for up to 10 particles.

Equilibrium Self-Assembly of 6 Disk Chains

Bond Counting

Bond	А	В	С
	2	2	3
	2	2	1

High Equilibrium Yield Design?

Does it work?

- Simulate with Brownian Dynamics

 Close-ranged Morse Potential
- Only about 50% yield after 8 hours (real time)
 - Extrapolating the rate, 90%
 yield will take ~40-50 hours
- Why? Kinetic trapping by Chevron

 Time scale for breaking Red-Red bond ~ exp(E)

Incorporating Kinetics - Markov Model

Forward Rate Estimation

Use Reflecting Brownian Dynamics to sample the exit time out of state i, and keep counts of the number of times state j is visited.

 $\hat{T_{ij}}$

Mean First Exit Time: $\hat{ au} = rac{\delta t}{\sum_{k=1}^M t_k} \sum_{k=1}^M rac{t_k(t_k+1)}{2}$

Transition Probability: $\hat{P_{ij}} = rac{c_j}{N}$

Transition Rate:

Independent of Interaction Strengths!

State i

State j

Backward Rates

- Estimating the rate of bond breakage is hard.
 - Instead, invoke detailed balance

$$T_{ji}=rac{\pi_i}{\pi_j}T_{ij}$$
 (and π depends on E !

• Reweighting Scheme:

$$rac{\pi_i(E)}{\pi_j(E)} = rac{\pi_i(E_0)}{\pi_j(E_0)} e^{-eta(E-E_0)}$$

• Equilibrium probabilities at the reference value are estimated exactly in the sticky limit via an MCMC on manifolds algorithm. [Zappa, Holmes-Cerfon, Goodman, 2017]

Markov Chain Model Outputs

- 1. Equilibrium Probabilities for each ground state
 - a. Must be estimated once for one parameter set.
 - b. Re-weighting scheme allows fast computation for any parameter set.
- 2. Average transition rates to each ground state.
 - a. Can be computed using the transition rate matrix, T, by solving a linear system.

$T_G \vec{\tau} = -1, \quad \vec{\tau}(G) = 0$

 $k= au_0^{-1}$

Markov Model Output - Triangle, 2 Types

Compute (π_i, τ^{-1}) for many different choices of $\vec{E} = (E_{AA}, E_{AB}, E_{BB})$

Pareto front: No objective can be increased without decreasing another

Genetic Algorithm for Computing Pareto Fronts

Determining the Minimum Number of Species

- Allow particle species to be an inheritable property for the genetic algorithm.
- Fix number of types as m. Increase m until assembly efficiency is comparable to m=6.
- Nearly vertical fronts -> tradeoff eliminated!

Applying to Other Structures

Verification through Simulation

- Perform 400 Brownian dynamics simulations using optimal triangle parameters determined by the genetic algorithm.
- Similar dynamics for 3 and 6 types, but why only 50% yield?
- Model drawback: lumping by adjacency matrix.
- Takeaway: 100% yield is not possible with isotropic interactions.

Conclusions on Equilibrium Self-Assembly

- I used a coarse-grained Markov model along with a genetic algorithm to identify thermodynamic-kinetic tradeoffs for the self assembly of colloidal chains.
- By constructing Pareto fronts, I was able to determine the minimal design complexity to achieve assembly that is as efficient as possible, within the confines of isotropic interactions.
- Brownian dynamics simulations showed we cannot achieve yields near 1 with isotropic interactions; orientation dependent interactions are necessary.
 - A possibility for future work is to come up with a sampling approach to identify these tradeoffs, which would naturally capture the traps neglected by this model.

Brownian Dynamics (Plus Hydrodynamics)

3 Choices for the Mobility Matrix:

- 1) Identity -> Typical Brownian Dynamics
- 2) Far-field Hydrodynamic Interactions (RPY Tensor)
- 3) Far-field + Short-Ranged Lubrication Corrections [1]

[1] Brennan Sprinkle, Ernest B. van der Wee, Yixiang Luo, Michelle Driscoll, and Aleksandar Donev. Driven dynamics in dense suspensions of microrollers. Soft Matter, 16:7982 – 8001, 2020.

Comparing Simulation Yields

- Hydrodynamics has a noticeable effect on the ground state yields.
- Note: Sample size still too small to choose a "best" model.
- Also have access to full trajectory information.
 - How else can we compare simulation results?

BD trajectories courtesy of Andreas Neophytou, University of Birmingham.

Effect of Hydrodynamics on Pathways

Most Probable Path:

Probability Distribution of 1-bonded states:

Brownian Dynamics Far-Field HD Far-Field HD + Lubrication

Distribution of Dwell Times

Comparing First Hitting Time Distributions

 Compare actual clusters via an order parameter. Ex: Radius of Gyration

 $ig| R_g^2 = rac{1}{N} \sum_{i=1}^N r_i^2 ig|$

- Simulations with lubrication forces favor more compact structures at first bond time.
- Could be result of increased time until bond formation?

Conclusions on Hydrodynamics

- We performed hydrodynamics simulations of the self assembly of 7-disk colloidal chains and compared to experiment and plain BD.
 - Hydrodynamics had a non-negligible effect on ground state yields, potentially due to the suppression of triangle formation at the end of the chain.
 - More data is necessary to make a comparison among models.
- Short-ranged hydrodynamics led to an increase in the time for bond formation
 - A possible explanation is an additional effective energy barrier for bond formation induced by lubrication. This warrants further study.
- The dynamics with short-ranged lubrication were found to be sensitive to the pair potential.
 - Simulation would benefit from an in-depth study of the pair potential between colloids.

Non-Equilibrium Protocols for Colloidal Self-Assembly

- Equilibrium self-assembly is typically plagued by thermodynamic-kinetic tradeoffs
- Tradeoffs can be eliminated by increasing the complexity of the design space.

• Alternative: introduce a non-equilibrium driving to facilitate assembly

- Example: a time-dependent temperature for a folding experiment
- Bond strength depends sensitively on temperature
- Rates are now implicitly characterized by the experimental time
- Potentially more experimentally accessible than creating more particle types

Idealized Non-Equilibrium Assembly Example

Time-Dependent Protocol Optimization

Goal:

 $egin{aligned} \max_{ heta(t)} P_B(T) \ & ext{subject to} \ &\partial_t ec{p}(t) = ec{p}(t) L(heta(t)), \ &ec{p}(0) = ec{p}_0 \end{aligned}$

Approach:

$$rac{\delta ec{p}(t)}{\delta heta(s)} = ec{R}(t,s)$$

 $\overline{- heta^{n+1}}(t)= heta^n(t)+h\sum_{i\in B}R_i(T,t)$

Time-Dependent Protocol Optimization - Adjoint Algorithm

Primal Equation:

 $egin{aligned} \partial_t ec{p}(t) &= ec{p}(t) L(heta(t)), \ ec{p}(0) &= ec{p}_0 \end{aligned}$

Time Derivative of Inner Product:

Adjoint Equation:

 $egin{aligned} \partial_t ec{\mu}^T(t) &= -L(heta(t))ec{\mu}^T(t), \ ec{\mu}^T(T) &= ec{b}^T \end{aligned}$

$$egin{aligned} \partial_t \left(ec{R}(t,s) ec{\mu}^T(t)
ight) &= \partial_t ec{R}(t,s) ec{\mu}^T(t) + ec{R}(t,s) \partial_t ec{\mu}^T(t) \ &= \left(ec{R}(t,s) L(heta(t)) + ec{p}(t) rac{\delta L(heta(t))}{\delta heta(s)}
ight) ec{\mu}^T(t) - ec{R}(t,s) L(heta(t)) ec{\mu}^T(t) \ &= ec{p}(t) rac{\delta L(heta(t))}{\delta heta(s)} ec{\mu}^T(t) \ &\int_0^T ec{p}(t) rac{\delta L(heta(t))}{\delta heta(s)} ec{\mu}^T(t) dt = rac{\delta P_B(T)}{\delta heta(s)} \end{aligned}$$

Dissipative Penalty Term

- Protocols may develop steep gradients or fast oscillations
 - Potentially unrealizable in a physical experiment. Ex: Instantaneous temperature control

- Introduce penalty term to favor smooth solutions $P(heta(t)) = -\lambda/2\int_0^T |\dot{ heta}(t)|^2 dt$
- Gradient descent update then becomes equivalent to solving a heat equation with source term in some artificial optimization time, *τ*. Use Neumann BCs.

 $heta_ au(t) = G(T,t) + \lambda heta_{tt}(t)$

Assembling the Parallelogram

Assembling Other 6-Disk Clusters

Conclusions on Non-Equilibrium Self-Assembly

- I've presented a method for computing an optimal time dependent protocol to maximize the probability of a target state, for dynamics governed by a Markov jump process.
 - Applying the algorithm to the self-assembly of 6-disk chains, we found protocols to form each ground state with high yield, including a previously known procedure for the parallelogram.
 - The transition matrix is constructed under the same assumptions as for the equilibrium self-assembly problem, so the same issues are present regarding isotropic interactions.

- We have also derived an analogous adjoint algorithm for dynamics governed by an SDE. In this case, we also have a formula to approximate gradients by sampling for higher dimensional problems.
 - Still need to apply it to test problems and compare to other methods. Ex: CMA-ES, Miskin Optimizer

