
Faster Solver of Multiple Linear Systems via Block
Conjugate Gradients

Lu, William *
Mentor: Wechsung, Florian

*Applied Math Summer Research Experience (AM-SURE) 2021.
Courant Institute of Mathematical Sciences, New York University, wl1869@nyu.edu

Abstract

Iterative methods such as Conjugate Gradient and GMRES have long been
the standard for solving the linear systems that arise from finite element dis-
cretisations of Partial Differential Equations. However, these methods usually
solve one linear system at a time. Using Block Conjugate Gradient allows us to
solve multiple linear system at once faster. We find out that BCG has a cheaper
memory communication cost than that of CG. BCG reaches the solution in much
fewer iterations than CG due to information sharing. This idea holds true for
Preconditioned CG and Preconditioned BCG as well.

1

1 Introduction
Given a linear system Ax = b, LU decomposition will be sufficient for us to find the solu-
tion provided that the matrix size is small. The time complexity for LU decomposition
is approximately O(n3), which is not ideal if the matrix is too large.

Therefore, an iterative method that uses an initial guess to generate a sequence
of improving approximate solutions is useful in this case, because each step only in-
volves a matrix-vector product. The calculation is cheaper at each iterate than LU
decomposition.

Steepest Descent is one of the iterative methods that finds the approximate true
solution of a linear system. When we try to solve the linear system A · x = b, it is
equivalent to find the minimum of the quadratic form f(x) = 1

2
xTAx − bTx. f ′(x) =

Ax − b, according to Shewchuk’s equation (6) and (7). [5]. Starting from the initial
guess x0, we find the sequence of the improving approximate solutions, x1, x2, ...xk , by
always finding the negative gradient of each iterate, ∇f = rk = b − Axk, because the
direction of the negative gradient is the direction in which the function decreases most
quickly from each xk. Define the kth error iterate as ek = xk − x. If we plug the error
equation into the residual equation, we see that rk = −Aek. So the residual direction is
the steepest descent direction. However, this method is still not ideal. The same search
direction may be taken several times instead of once.

Conjugate Gradient improves Steepest Descent by avoiding unnecessary "stair-like"
paths. CG is an algorithm that solves a linear system with the matrix being symmetric
and positive-definite. We advance steps in a set of orthogonal directions. In this way,
we do not have to take steps in the same direction multiple times. The search direction
pk is determined from each iterate’s residual vector and has to satisfy some properties.
This new residual vector is orthogonal to the previous residuals and search directions.
Hence, since we take each orthogonal direction once, CG is much faster than the method
of steepest descent.

Now consider that there are multiple linear systems you want to solve. Given
multiple linear systems AX` = B`, where ` ∈ N is the block size of the right hand
side, X ∈ Rn×l, B ∈ Rn×l. Using CG many times in this case definitely works; however,
when we have multiple linear systems, it sounds more ideal if we let our computer
receive all problems at once rather than multiple times. We hope that providing all
information at once will allow the CPU to solve them in fewer iterations. This will help
saving the memory communication cost, the cost for the CPU to access the received
information from the memory, as well. We use BCG for faster convergence.

In the case of incompressible fluid flow simulation, the matrix A could correspond
to Stoke’s equation. A could also be other PDE such as Elasticity equation. The right
hand side B could represent different boundary conditions.

We observe how matrix-vector multiplication plays a role in terms of complexity
and see why we prefer Block Conjugate Gradient for a large linear system and multiple
RHS.

2

2 Algorithms

2.1 CG and BCG

We will first observe the differences between CG and BCG algorithms. CG is first
proposed by Hestenes and Stiefel [3], and BCG is proposed by O’ Leary [4].

Algorithm 1 CG
1: Input: Matrix A, a guessed solution x0,

a RHS b, and a threshold.
2: r0 = b− Ax0
3: if r0 is smaller than the threshold, re-

turn x0.
4: p0 = r0
5: while true do
6: αk =

rTkrk
pTkApk

7: xk+1 = xk + αpk
8: rk+1 = rk − αApk
9: if rk+1 is smaller than the threshold

then
10: exit the loop
11: else
12: βk =

rTk+1rk+1

rTkrk

13: pk+1 = rk+1 + βkpk

14: End Repeat
15: return xk+1

Algorithm 2 Block CG
1: Input: Matrix A, a guessed solution
X0, a RHS B, and a threshold.

2: R0 = B − AX0

3: if R0 is smaller than the threshold, re-
turn X0.

4: P0 = R0

5: while true do
6: Λk = (PT

k APk)
−1
RT
kRk

7: Xk+1 = Xk + PkΛk

8: Rk+1 = Rk − APkΛk

9: if Rk+1 is smaller than the threshold
then

10: exit the loop
11: else
12: Φk = (RT

kRk)
−1RT

k+1Rk+1

13: Pk+1 = Rk+1 + PkΦk

14: End Repeat
15: return Xk+1

BCG deals with multiple RHS at the same time while CG deals with one column
vector per time. Besides, notice that on line 6 and 8 in CG, the matrix-vector product
dominates the cost of the whole algorithm, whereas in BCG the matrix-matrix multi-
plication contributes the most to the cost of the algorithm. rk and Rk represent the
residuals at kth step. pk and Pk are the kth search directions. αk and Λk are the step
sizes for the search direction. And finally we use βk and Φk to find the new search
directions.

The search directions p0, p1, ..., pk are A-orthogonal to each other. That is, pTi Apj =
0 for i 6= j. Following Elman’s lemma 2.1 in [2] on page 74, we can write the so-
lution as a linear combination of this set of search directions which could be writ-
ten as a Krylov subspace Kk = span{p0, p1, ..., pk} = span{p0, Ap0, ..., Ak−1p0} =
span{r0, Ar0, ..., Ak−1r0}. For BCG, the new iterate Xk will be contained in an ex-
panding block-Krylov subspace X0 + span(R0, AR0, ...A

k−1R0). Information sharing of
Block CG is achieved by the Block CG subspace at below.

Definition 2.1. The block Krylov subspace is defined such that the ith column of

3

the iterate XK can be expressed by the linear combination of as much as n number of
Krylov subspace that created thus far. In other words, X(i)

K can be expressed through
X

(i)
0 +

⊕n
i=1 span(R

(i)
0 , AR

(i)
0 , ...A

k−1R
(i)
0), following Cockett’s equation (24) in [1] on

page 6.

For line 6 and 12 in BCG algorithm, instead of finding the inverse of RT
kRk and

PT
k APk, we find the pseudo inverse of this product. This is due to the fact that the

block B may contain a column of zeros or have two equivalent columns. In other words,
the rank of Pk is less than the size of the block. This makes the product PT

k APk become
singular. The function from numpy, numpy.linalg.pinv, will compute the generalized
inverse of a matrix using singular value decomposition. There are other methods to
prevent this issue, for instance, the method from O’ Leary’s paper on page 301. She
proposed that if the columns of the search direction Pk lose their independence, we
should delete the zeros or redundant columns of Pk, Xk, and Rk. In this way, the
algorithm will converge, and the deleted columns will be updated separately. [4]

2.2 Preconditioned CG and Preconditioned BCG

Conjugate gradient is a fast iterative method; however, it can be faster by using a pre-
conditioner.For example, we find another matrixM such thatM−1 ≈ A−1. Multiplying
the inverse of the preconditioner will transform A into an identity matrix. Change the
linear system Ax = b to M−1Ax = M−1b.

4

Algorithm 3 PCG
1: Input: Matrix A, a preconditioner M,

a guessed solution x0, a RHS b, and a
threshold.

2: r0 = b− Ax0
3: z0 = M−1r0
4: if r0 is smaller than the threshold, re-

turn x0.
5: p0 = r0
6: while true do
7: αk =

rTkzk
pTkApk

8: xk+1 = xk + αpk
9: rk+1 = rk − αApk

10: if rk+1 is smaller than the threshold
then

11: exit the loop
12: else
13: zk+1 = M−1rk+1

14: βk =
rTk+1zk+1

rTkzk

15: pk+1 = zk+1 + βkpk

16: End Repeat
17: return xk+1

Algorithm 4 PBCG
1: Input: Matrix A, a preconditioner M,

a guessed solution X0, a RHS B, and a
threshold.

2: R0 = B − AX0

3: Z0 = M−1R0

4: if R0 is smaller than the threshold, re-
turn X0.

5: P0 = R0

6: while true do
7: Λk = (PT

k APk)
−1RT

kZk
8: Xk+1 = Xk + PkΛk

9: Rk+1 = Rk − APkΛk

10: if Rk+1 is smaller than the threshold
then

11: exit the loop
12: else
13: Zk+1 = M−1Rk+1

14: Φk = (RT
kZk)

−1RT
k+1Zk+1

15: Pk+1 = Zk+1 + ΦkPk

16: End Repeat
17: return xk+1

We do this because preconditioning will make the calculation much easier. Now
these two preconditioned algorithms work almost the same as CG and BCG algorithms.
The only difference is on line 3 and 13, where we multiply the preconditioner with the
residual. The preconditioners that we use are found by using Jacobi method.

2.3 Convergence

Definition 2.2. According to equation (1.112) in Elman’s paper [2], we define the
energy-norm or A-norm of every error is defined as ||e||A = (eTAe)

1
2 .

The convergence theorem for Conjugate Gradient following Shewchuk’s equation
(52) [5] is:

||ek||A 6 2(

√
κ− 1√
κ+ 1

)i||e0||A (1)

where κ = λn
λ1

is the condition number of the matrix A. λn and λ1 represent the largest
and the smallest eigenvalue of the matrix A respectively. But for block conjugate
gradient, we use κ` = λn

λ`
for the convergence theorem. λ` is the `th largest eigenvalue

of the matrix A. We apply the Frobenius norm for error iterates. In the spectrum

5

of matrix A, λn is the largest eigenvalue, and λ` is the `th largest eigenvalue. The
convergence theorem becomes

||Ek|| 6 2 · (
1−

√
κ−1`

1 +
√
κ−1`

)k||E0|| = 2(

√
κ` − 1√
κ` + 1

)k||E0|| (2)

according to O’ Leary’s paper at the bottom of page 312. [4] Suppose the block size is
one and the initial guesses are the same for both CG and BCG. Then, the error norm
for the initial guesses should be the same as well. κ` will be equal to κ, as ` is one.

Therefore, when the block size is one, they have the same convergence rate. When
the block sizes increase, κ` gets closer to 1. According to O’Leary’s paper on page 312,
BCG converges faster if the spread of eigenvalues of the matrix is more clustered. [4]
Since κ` is closer to 1 than κ, BCG requires fewer iterations. This works the same for
PBCG as well.

3 Cost
Define the time cost notation T{algorithm,blocksize} as the time spent for an algorithm to
solve for a certain block size. Define Iter{algorithm,blocksize} as the number of iterations
required for an algorithm to solve a certain block size. Given ` linear systems with the
same matrix A but different column vectors b, the time cost is:

T{PCG,`} = ` · T{PCG,1} ≈ ` · Iter{PCG,1} · T{MatV ec,1}

where the time cost of the matrix-vector product T{MatV ec,1} ≈ T{A,1} + T{P,1}.
T{A,1} is time for calculating the matrix vector product of A and one column vector.

T{P,1} is time for calculating the matrix vector product of the preconditioner and one
column vector.

The time cost for solving l RHS with PBCG is:

T{PBCG,`} = Iter{PBCG,`} · T{MatMat,`}

where the time cost of the matrix-matrix product T{MatMat,`} ≈ T{A,`} + T{P,`}.
T{A,`} is time for calculating the matrix-matrix product of A and l column vectors.

T{P,`} is time for calculating the matrix-matrix product of the preconditioner P and l
column vectors. From the above two equations, we observe that there are two ways
that BCG is faster than CG, T{PBCG,`} < T{PCG,`} , for solving a linear system with `
RHS. First, Iter{PBCG,`} < Iter{PCG,1}. Second, T{MatMat,`} < ` · T{MatV ec}.

In the first case, the number of iterations for BCG and CG depends on the spread of
eigenvalues of matrix A. Define the eigenvalues of the matrix A as λ1, λ2, ...λn. Then,
its condition number is κ = λn

λ1
. When using PBCG, we use the ratio κ` = λn

λ`
. By

equation (1) and (2), we see that the block convergence is faster because κ` is closer to
1. Thus, Iter{PBCG,`} < Iter{PCG,1}.

6

In the second case, suppose A is a sparse matrix of size n that has sA << n
non-zeros per row. Assume the preconditioner is a sparse matrix of size n that has
sP << n non-zeros per row. For block size ` = 1, the computational cost of matrix A
with a vector is T flops{A,1} = O(sA · n). The memory communication cost of matrix A is
O(sA ·n), and the memory communication cost of a vector b is O(n). In total, Tmem{A,1} =

O(sA · n+ n). We apply the same rule for calculating the memory communication cost
and the computational cost for the preconditioner.

For block size ` > 1, if we do CG multiple times, then the costs become:

` · T flops{A,1} = ` ·O(sA · n) = O(` · sA · n) (3)

` · Tmem{A,1} = ` ·O(sA · n+ n) = O(` · sA · n+ n · `) (4)

` · T flops{P,1} = ` ·O(sP · n) = O(` · sP · n) (5)

` · Tmem{P,1} = ` ·O(sP · n+ n) = O(` · sP · n+ n · `) (6)

However, if we do PBCG for block RHS once, the computational cost and the memory
communication cost are:

T flops{A,`} = O(sA · n · `) (7)

Tmem{A,`} = O(sA · n+ n · `) (8)

T flops{P,`} = O(sP · n · `) (9)

Tmem{P,`} = O(sP · n+ n · `) (10)

We see from (3) and (7) that the computational cost for using PBCG once and using
PCG l times is the same. This is true for (5) and (9); however, comparing (4) and
(8), we observe that PBCG has a smaller memory communication cost. The lowwer
memory communication cost motivates us to apply PBCG. When the linear system
is large, Tmem{P,`} will dominate the cost due to the fact that sP > sA. Still, comparing
equation (6) and (10), we see that the memory communication cost, Tmem{P,`} , will be
smaller than ` · Tmem{P,1}.

4 Results
In this section, we will first investigate what effect a preconditioner has on the algorithm.
We will see how the spectrum of the matrix will influence the convergence rate. Then,
we see the relationship between increasing block size and convergence. Finally, we plot
the time spent for PBCG and PCG to solve ` linear systems and the time spent for
each iteration of the two algorithms.

We consider matricesAn,γ ∈ Rn∗n, where n ∈ {882, 3362, 13122} and γ ∈ {0, 1, 1000}.
Here γ is a parameter, and large γ corresponds to a more complex system. n is the size
of the matrix.

7

4.1 CG vs PCG

Figure 1(a) gives us six convergence lines for CG and PCG. The size of these six matrices
are the same, but the value of γ of these matrices are distinct. For CG, we find the
condition number of the matrix A. For PCG, we find the condition number of the
product of the matrix A and the preconditioner P . Figure 1(b) is the eigenvalue graph
for four of the matrices. The spread of the eigenvalues is shown by a horizontal axis.

(a) CG and PCG on three matrices (b) Spectrum of matrices

Figure 1: In (a), we conclude that PCG is faster than CG. The condition number serves
as an evidence to support the statement. In (b), the spectrum of a matrix corresponds to
the lines in (a) by color. The more clustered the eigenvalues, the faster the convergence
rate. The red line converges in around 200 iterations, and its eigenvalues are more
clustered than the blue, purple, and brown one.

4.2 Gamma and the block size effects

In figure 2, we observe how the block size influences the number of iterations and how γ
might make a difference for the convergence. In figure 2(a), it only requires one fourth
of the number of iterations for ` = 16 than for ` = 1. In figure 2(b), we concludes that
the number of iterations decreases if the block size increase. Nevertheless, when block
size is 8 and 16, the number of iterations required exceeds the number of iterations
required for smaller block sizes. We suspect that this peculiarity might be due to the
use of pseudo inverse in algorithm 4.

8

(a) (b)

Figure 2: These two graphs show how A3362,1 and A3362,1000 behave under PBCG. When
the value of gamma is large and the block size is big, the corresponding iterations will
be fewer. The application of pseudo inverse still works when γ is small and block size
is < 16.

4.3 Use PBCG once or PCG several times?

Finally, we answer the ultimate question by plotting the time graph for PBCG and
PCG. In figure 3(a), as block size increases, the time required for PBCG to solve `
linear systems once is less than the time required for PCG to solve ` linear systems.
We assume that the gap in the left corner is due to the use of pseudo inverse.

From figure 3(b), we have found out that as the block size increases, the time
required for each iteration of PBCG is much less than the time required for PCG. The
time required for each iteration of PCG behaves linearly with a smaller slope, but the
time required for each iteration of PBCG increases much slower. This is a direct effect
of the information sharing property for search directions.

What could happen if we increase the block size ` more and more? The size of the
product that we will perform pseudo inverse is ` × `. Suppose that T{pinv} is the time
required for finding the pseudo inverse of a matrix. When ` is small, T{pinv} is not too
expensive. But as ` increases, T{pinv} will be expensive. Hence, we should not allow the
block size to be too large and let T{pinv} potentially dominate the cost .

9

(a) (b)

Figure 3: (a) illustrates the time difference between PBCG to solve a RHS with size `
and PCG to solve ` linear systems. T{PBCG,`} increases slower than ` · T{PCG,1}. (b)
compares the time spent for each iteration of PBCG and PCG. Notice that for each
iteration of PBCG, the preconditioner-matrix product will dominate the cost. Its cost
is represented by T (P, `).

5 Conclusions
To summarize, when we want to test multiple boundary conditions in a linear system,
rather than applying CG or PCG multiple times, it’s faster and requires fewer iterations
for us if we use BCG or PBCG. Applying BCG and PBCG, we solve multiple linear
systems at once. We need fewer iterations, and each iteration is cheaper for BCG and
PBCG when the linear system is large. This result can be seen from the time Figure
3(a) and (b). There are several ways to make the problem easier. For example, if we
increase the block size of the RHS, the number of iterations will decrease. If we can
design a proper preconditioner, the linear systems will be easier for us to solve. Also,
using pseudo inverse can deal with singular matrices that may arise in BCG and PBCG.

Thanks to the cheaper memory communication cost and the information sharing
property of BCG and PBCG, we now can solve multiple linear systems with a faster
iterative method.

Acknowledgement
Many thanks to my mentor Florian Wechsung for the insightful lessons and great guid-
ance on this paper and the presentation.

10

References
[1] Rowan Cockett. The block conjugate gradient for multiple right hand sides in a

direct current resistivity inversion. 2015.

[2] Howard C Elman, David J Silvester, and Andrew J Wathen. Finite elements and
fast iterative solvers: with applications in incompressible fluid dynamics. Oxford
Science Publications, 2014.

[3] Magnus R Hestenes, Eduard Stiefel, et al. Methods of conjugate gradients for solv-
ing linear systems. Vol. 49. 1. NBS Washington, DC, 1952.

[4] Dianne P O’Leary. “The block conjugate gradient algorithm and related methods”.
In: Linear algebra and its applications 29 (1980), pp. 293–322.

[5] Jonathan R Shewchuk. An introduction to the conjugate gradient method without
the agonizing pain. 1994.

11

	Introduction
	Algorithms
	CG and BCG
	Preconditioned CG and Preconditioned BCG
	Convergence

	Cost
	Results
	CG vs PCG
	Gamma and the block size effects
	Use PBCG once or PCG several times?

	Conclusions

