
1/20

Electrostatics in doubly periodic geometries

Ondrej Maxian, Raul P. Pelaez,
Leslie Greengard, and Aleks Donev

October 22, 2020



2/20

Steps

Doubly periodic problems with smooth forcing

Ewald splitting for point-like charges

Dielectric boundaries (walls)

Results



3/20

Doubly periodic geometry

Poisson’s equation for electrostatic potential

ε∆φ = −f

doubly periodic in (x , y) ∈ [−L, L]. Unbounded in z . Assuming
electroneutral domain

∇φ(x , y , z → ±∞)→ 0

For now, assume f is a smooth function
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Fourier approach

ε∆φ = −f
In our applications, f is compactly supported in [−L, L]2 × [0,H].

→ ε∆φ = 0 z < 0 or z > H

Harmonic solve in xy Fourier space k2 = k2
x + k2

y

ε
(
φ̂zz − k2φ̂

)
= 0

→ φ̂(k , z) =

{
Ae−kz z > H

Bekz z < 0

This implies the boundary conditions

φ̂z(k ,H) + kφ̂(k,H) = 0

φ̂z(k , 0)− kφ̂(k, 0) = 0︸ ︷︷ ︸
Dirichlet to Neumann map!

Boundaries arbitrary → same BCs hold for interior φ̂
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Finite problem to solve

ε∆φ = −f

Periodic BCs → FFT → 2 point BVP for each k2 = k2
x + k2

y

ε
(
φ̂zz − k2φ̂

)
= −f̂ (k , z)

φ̂z(x , y ,H) + kφ(k ,H) = 0

φ̂z(x , y , 0)− kφ̂(x , y , 0) = 0

Solve this BVP using spectral integration matrix (Greengard 1991)

I Lay down Chebyshev grid

I Solve for φ̂zz on the Cheb grid: ε
(
I − k2S

)
φ̂zz = −f̂ (k , z)

I Obtain φ̂ by integration

Greengard. SIAM J. Numer. Anal. 28 (4), 1991.
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Smoothness of f

f (x) =
N∑
i=1

qi
(2πg2

w )3/2
exp

(
−‖x − z i‖2

2g2
w

)

I f is the charge density due to collection of Gaussian charges

I How large can gw be?

I Can a grid-based method work? Only if h ∼ gw .
Good Bad

I Need alternative strategy for small charges
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Ewald splitting
I Introduce Gaussian splitting function

γ(r ; ξ) ∝ e−r2ξ2

I Splitting parameter ξ has units 1/length optimized for speed
I Split charge = smeared charge + “dipole”

f = f ∗ γ︸︷︷︸
far field

+ f ∗ (1− γ)︸ ︷︷ ︸
near field
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Why does Ewald help?

I Near field ε∆φ(n) = (1− γ) ∗ f has net zero charge
I Exponentially-decaying near field Green’s function
I Free space BC → analytical solution
I Can be made nonzero at O(1) neighbors per point
I Cost of near field = O(N)

I Far field ε∆φ(f ) = γ ∗ f is wider and smoother
I Grid-based solver works
I Spread charge density to grid by convolving f ∗ γ1/2

I Solve ε∆ψ = (f ∗ γ1/2) on grid
I Interpolate grid γ1/2 ∗ ψ to get φ(f ) = ε−1∆−1 (f ∗ γ) at

charges.
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Permittivity jump - single wall

BCs for the potential φ at a dielectric interface: continuity of
potential and displacement

φ(x , y , 0+) = φ(x , y , 0−)

εφz(x , y , 0+) = εbφz(x , y , 0−)
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Image construction - single wall

Solution on z > 0 same as with uniform permittivity and set of
image charges

Use DP solver + Ewald splitting on the problem with images
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Complications for slab geometry

I Three different permittivities

I New BCs at z = H

φ(x , y ,H+) = φ(x , y ,H−)

εφz(x , y ,H−) = εtφz(x , y ,H+)

I Infinitely many images! Back to an infinite problem
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Ewald splitting for slab geometries

Near field is easy

I Choose ξ s.t. only one set of
images interact with slab

I Image construction satisfies
BCs

I Still O(N)



15/20

Ewald splitting: far field

Far field more involved

ε∆φ(f ) = −γ∗
(
f (charges) + f (img)

)
= −γ∗

(
f (charges) + f (img, 1) + f (img, 2)

)
I Spread to grid = smear charges

I Identify interpolation domain

I Find images that overlap domain

I Do initial solve with only these
images (BCs not satisfied)

ε∆φ̃(f ) = −γ∗
(
f (charges) + f (img, 1)

)
I But remaining images have

f (img) = 0 in interp domain

ε∆
(
φ(f ) − φ̃(f )

)
= −γ∗f (img, 2) = 0
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Charged walls
I Assume no charges (superposition)
I Harmonic solve with continuity BCs and

εφz(x , y , 0+)− εbφz(x , y , 0−) = −σb(x , y)

εφz(x , y ,H−)− εtφz(x , y ,H+) = σt(x , y)

I 2D FFT to get σ̂b(k), σ̂t(k)
I Solve 2 pt BVP

φ̂zz − k2φ̂ = 0

with BCs above ((x , y)→ k)
I Can be combined with prior harmonic solve if desired

+
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Salt water electrolyte
Na+ and Cl− ions (soft spheres of radius a) in water (ε ≈ 78)
confined by glass wall (εout ≈ 1, really 2− 5)
I q∗ = −q εout−ε

εout+ε
≈ 0.9q, images repelled by each other
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UAMMD = Brownian dynamics GPU code by Raul P.
Croxton et. al. Can. J. Chem 59 (13), 1981.
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Charged walls
Positively-charged wall with negatively charged ions

I εout = ε→ no images, matches analytical solution of PNP
equations (macroscopic theory, no εout)

I εout = 5/78ε ≈ 0.06ε→ Images repelled by each other

I εout = 0→ field outside irrelevant, close to glass

I Density of charges drops near wall
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Speed on the GPU
Splitting parameter ξ chosen to optimize speed

I Smaller ξ: slow near e−r2ξ2
decay, fast Fourier e−k2/ξ2

decay
I Near field eats up entire cost

I Larger ξ: faster near field decay, slower Fourier decay
I Finer grid, far field (spread & interpolate, FFT) cost more
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I 20K charges = 6 ms per time step!
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