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Quick demonstration of restart strategy
On Ackley function
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Projective Embeddings of Dynamical System (PEDS)
(Caravelli et al. 2023)

The optimization problem is: min F(X), where X € |
X

Extend the variable to M € R Denote the column vector by X] = M]|: , ]|

The update for Xit is then

Y Y=~y Q O(VF YL, Y, L, V) + a(l — Q)YY),

where Q is a projection matrix, i.e. Q° = Q, ® is called matrix map, y is the
learning rate, and o is some hyper parameter.



PEDS as particle interactions | : |-

xm
For a particular case in PEDS _‘
X,

. thH — th = —y(QO(VF; Y, Y, ...,V )+ all - Q)Yt) forj=1,...,m
» For a particular choice of €2 and D, it can be shown that the update is

equivalent to (see write-up for details)

‘ R* — R/ = — }/( Z VF(R)) + a(R! — Rt)) fori=1,...,N,
=1
1w
where R; is the row vector of M and R = — Z R;, namely the center of mass.

‘ ¥ =1



Quick demonstration of PEDS

On Ackley function




Inspiration for SA-PEDS

How PEDS can be seen as a Stochastic Approximation algorithm
] & _
R —Ri=—y[ — ) VFR) + a(R! — R
F-R=—r( Z} (R) + a(R! - R')

» Instead of treating R; as deterministic, we treat it as samples from a distribution.

» For R be drawn from /' (6, 6°), the first term is the empirical approximation of
"Rt (0.0) Y F(R). Here, O is the center of mass, similar to R.

 The second term pulls all the particles to their center of mass, which is
equivalent to decrease the variance of next samples, i.e. decrease o.

» Stochastic Approximation Algorithm deals with f(6) = E.F (0, ¢).




SA-PEDS

Stochastic Approximation Projective Embedding of Dynamical Systems

. Target: min EF(R), subjectto R ~ (0, o).
0.0

e (Given 90, Ons V> N
e« Fort=0,1,2,..., T, . orstopping condition is met

"ty T max

« Draw N samples R/, ..., R]t\, from (0, 67).

| o
. Compute the gradient g, = ~ Z VF (Rjt) and update 0, = optim(&,, g,, 7).
=1

» Shrink 0, ; = max(o, — a,0), where a is some fixed parameter

e The last @ is our minimizer.



Quick demonstration of SA-PEDS

On Ackley function
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Intuitions for SA-PEDS

Why this methods can work?
e« ForR ~ N (0, 0), we have

“VF(R) = [VF(R)/V(R; 0, 6*1)dR = JVF(R)p(é’ — R)YdX = VF* p(0),

» where p(X) ~ e_”XHZ(

up to constants)
* This is as smooth as the Gaussian density function

* This is also called Randomized Smoothing, in the context of non-smooth
Stochastic Gradient Descent (Duchi et al. 2012).
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Experiments

* Test function: Ackley function -

* Approaches:

 Restart: take different initial values and optimize.
 PEDS: the original PEDS algorithm
 SA-PEDS: the algorithm we proposed
* |nteresting variables:
e Success rate: if any particle finds the global min

 Convergence time: how long does the convergence take

Code: https://github.com/charliezchen/SA-PEDS



Experiments (m=2, N=20)

[ N R e e = = =
L e e R T
D s
PP @ &

i -

;".“’ii LIRS e R S R = 2 L o
L e NN e o A
e s - e S A A
MR & & el
L o o e |
e o - o
el - ,

PEDS SA-PEDS

Restart



Experiments (m=10, N=20)

Only showing first two coordinates, instead of all 10 coordinates.
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Experiments Results

The success rate on increasing N (x-axis) and m (y-axis)
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Experiments Results
How expensive is SA-PEDS?

Comparison of success rate and
average time for SA-PEDS (m=128)
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Discussions

* |nspired by PEDS, we proposed SA-PEDS, which achieves successful
convergence behavior on the Ackley function.

 SA-PEDS is for a particular case of PEDS. It’s not a strict generalization.

* |f the signal is in high-frequency (e.g. Rosenbrock function), PEDS and SA-
PEDS don’t work (preliminary results).

« PEDS and SA-PEDS are sensitive on the value of a (decreasing rate of
variance/the attraction force).

 Study this algorithm using particle theory and send N to infinity.
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Appendix A

The choice of optimizer

* For SA-PEDS, the variance of gradient will cause large wiggling effect for
Vanilla Gradient Descent. Using Adam solves this problem.

 For PEDS with large m, choosing small @ and using Adam improves the result.
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Appendix B

Accelerating SA-PEDS by importance sampling

By importance sampling, the expectation of gradient can be evaluated as:

+ EVFR)= (VFR)) VF(RR,) ... VFRy) (N(R;;0,0) N(Ry;0,0) ... N(R:0,0))

 After picking a set @ of points, we can calculate the probability-weighted

sum for the expectation. When € changes a little bit, we can just still get a

fairly good approximation by shifting the probability-weight matrix and adding
a few new points to ©.

* |t’s like sliding window / convolution.



Appendix C

Some remarks for PEDS m AN

. Y]?“ Y=y QO(VEY.Y,, ...V, +all —Q)Y),j=1,....m

« The original problem in m dimension is embedded into an Nm
dimensional space.

« The gradient is projected onto the column space of {2 and the second
term, called the decay function, ensures that Yl will also be on the

column space of €2 in the long run.

* |t is proved that this keeps local minimum and saddle points and it
transforms local maximum to be saddle points (Caravelli et al. 2023).



Appendix C
One particular case for PEDS Xim
. Y;H—th=—y(ﬂ O(VF; Y, Y, ....Y,) +al — Q)Yt)

. where ®(VF; Y, Y,,...Y,); = VF ((m;,m, ...m;,)") = VF(R),
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