

On the global minimum convergence of non-convex deterministic functions via Stochastic Approximation

Charlie Chen (mentors: Prof. Stefano Martiniani and Dr. Guanming Zhang)
July 27

(Caravelli et al. 2021)

Quick demonstration of restart strategy

On Ackley function

Content

- Projective Embeddings of Dynamical Systems (PEDS)
- PEDS as particle interactions
- Inspiration for SA-PEDS
- Algorithm: SA-PEDS
- Intuitions for SA-PEDS
- Experiments
- Discussions

Projective Embeddings of Dynamical System (PEDS)

(Caravelli et al. 2023)

- The optimization problem is: $\min_X F(X)$, where $X \in \mathbb{R}^m$.
- Extend the variable to $M \in \mathbb{R}^{N \times m}$. Denote the column vector by $Y_j = M[:, j]$.
- The update for Y_j^t is then
 - $Y_j^{t+1} - Y_j^t = -\gamma(\Omega \Phi(\nabla F; Y_1^t, Y_2^t, \dots, Y_m^t) + \alpha(I - \Omega)Y_j^t)$,
 - where Ω is a projection matrix, i.e. $\Omega^2 = \Omega$, Φ is called **matrix map**, γ is the learning rate, and α is some hyper parameter.

$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{pmatrix} \rightarrow \begin{pmatrix} x_{1,1} & x_{1,2} & \cdots & x_{1,m} \\ x_{2,1} & \ddots & & \vdots \\ \vdots & & \ddots & \vdots \\ x_{N,1} & \cdots & \ddots & x_{N,m} \end{pmatrix} Y_m$$

PEDS as particle interactions

For a particular case in PEDS

$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{pmatrix} \rightarrow \begin{pmatrix} x_{1,1} & x_{1,2} & \cdots & x_{1,m} \\ x_{2,1} & \ddots & & \vdots \\ \vdots & & \ddots & \vdots \\ x_{N,1} & \cdots & & x_{N,m} \end{pmatrix} \begin{matrix} R_N \\ X_m \end{matrix}$$

- $Y_j^{t+1} - Y_j^t = -\gamma(\Omega \Phi(\nabla F; Y_1^t, Y_2^t, \dots, Y_m^t) + \alpha(I - \Omega)Y_j^t)$, for $j = 1, \dots, m$
- For a particular choice of Ω and Φ , it can be shown that the update is equivalent to (see write-up for details)
 - $R_i^{t+1} - R_i^t = -\gamma \left(\frac{1}{N} \sum_{i=1}^N \nabla F(R_i^t) + \alpha(R_i^t - \bar{R}^t) \right)$, for $i = 1, \dots, N$,
 - where R_i is the row vector of M and $\bar{R} = \frac{1}{N} \sum_{i=1}^N R_i$, namely the center of mass.

Quick demonstration of PEDS

On Ackley function

Inspiration for SA-PEDS

How PEDS can be seen as a Stochastic Approximation algorithm

$$\bullet \quad R_i^{t+1} - R_i^t = -\gamma \left(\frac{1}{N} \sum_{i=1}^N \nabla F(R_i^t) + \alpha(R_i^t - \bar{R}^t) \right)$$

- Instead of treating R_i as deterministic, we treat it as samples from a distribution.
- For R_i be drawn from $\mathcal{N}(\theta, \sigma^2)$, the first term is the empirical approximation of $\mathbb{E}_{R \sim \mathcal{N}(\theta, \sigma^2)} \nabla F(R)$. Here, θ is the center of mass, similar to \bar{R} .
- The second term pulls all the particles to their center of mass, which is equivalent to decrease the variance of next samples, i.e. decrease σ .
- Stochastic Approximation Algorithm deals with $f(\theta) = \mathbb{E}_\xi F(\theta, \xi)$.

SA-PEDS

Stochastic Approximation Projective Embedding of Dynamical Systems

- Target: $\min_{\theta, \sigma} \mathbb{E} F(R)$, subject to $R \sim \mathcal{N}(\theta, \sigma)$.
- Given $\theta_0, \sigma_0, \gamma, \eta$
- For $t = 0, 1, 2, \dots, T_{max}$ or stopping condition is met
 - Draw N samples R_1^t, \dots, R_N^t from $\mathcal{N}(\theta, \sigma^2)$.
 - Compute the gradient $g_t = \frac{1}{N} \sum_{i=1}^N \nabla F(R_j^t)$ and update $\theta_{t+1} = \text{optim}(\theta_t, g_t, \gamma)$.
 - Shrink $\sigma_{t+1} = \max(\sigma_t - \alpha, 0)$, where α is some fixed parameter
- The last θ is our minimizer.

Quick demonstration of SA-PEDS

On Ackley function

Intuitions for SA-PEDS

Why this methods can work?

- For $R \sim \mathcal{N}(\theta, \sigma^2)$, we have

$$\bullet \mathbb{E} \nabla F(R) = \int \nabla F(R) \mathcal{N}(R; \theta, \sigma^2 I) dR = \int \nabla F(R) \rho(\theta - R) dX = \nabla F * \rho(\theta),$$

- where $\rho(X) \approx e^{-\|X\|^2}$ (up to constants)
- This is as smooth as the Gaussian density function
- This is also called Randomized Smoothing, in the context of non-smooth Stochastic Gradient Descent (Duchi et al. 2012).

Experiments

- Test function: Ackley function
- Approaches:
 - Restart: take different initial values and optimize.
 - PEDS: the original PEDS algorithm
 - SA-PEDS: the algorithm we proposed
- Interesting variables:
 - Success rate: if any particle finds the global min
 - Convergence time: how long does the convergence take

Experiments (m=2, N=20)

Restart

PEDS

SA-PEDS

Experiments (m=10, N=20)

Only showing first two coordinates, instead of all 10 coordinates.

PEDS

SA-PEDS

Experiments Results

The success rate on increasing N (x-axis) and m (y-axis)

Restart

PEDS

SA-PEDS

Experiments Results

How expensive is SA-PEDS?

Comparison of success rate and
average time for SA-PEDS ($m=128$)

Discussions

- Inspired by PEDS, we proposed SA-PEDS, which achieves successful convergence behavior on the Ackley function.
- SA-PEDS is for a particular case of PEDS. It's not a strict generalization.
- If the signal is in high-frequency (e.g. Rosenbrock function), PEDS and SA-PEDS don't work (preliminary results).
- PEDS and SA-PEDS are sensitive on the value of α (decreasing rate of variance/the attraction force).
- Study this algorithm using particle theory and send N to infinity.

Acknowledgement

This research would not be possible without the support of

- Courant Institute of Mathematical Science
 - For organizing the events
- Simons Center for Computational Physical Chemistry
 - For funding
- NYU High Performance Computing Greene
 - For computation resources

Reference

- Caravelli, Francesco, Forrest C. Sheldon, and Fabio L. Traversa. "Global minimization via classical tunneling assisted by collective force field formation." *Science Advances* 7.52 (2021): eabh1542.
- Caravelli, Francesco, et al. "Projective embedding of dynamical systems: Uniform mean field equations." *Physica D: Nonlinear Phenomena* 450 (2023): 133747.
- Duchi, John C., Peter L. Bartlett, and Martin J. Wainwright. "Randomized smoothing for stochastic optimization." *SIAM Journal on Optimization* 22.2 (2012): 674-701.

Appendix A

The choice of optimizer

- For SA-PEDS, the variance of gradient will cause large wiggling effect for Vanilla Gradient Descent. Using Adam solves this problem.
- For PEDS with large m , choosing small α and using Adam improves the result.

SA-PEDS with VGD

PEDS with Adam

Appendix B

Accelerating SA-PEDS by importance sampling

- By importance sampling, the expectation of gradient can be evaluated as:
- $\mathbb{E} \nabla F(R) = (\nabla F(R_1) \quad \nabla F(R_2) \quad \dots \quad \nabla F(R_K))^T (\mathcal{N}(R_1; \theta, \sigma) \quad \mathcal{N}(R_2; \theta, \sigma) \quad \dots \quad \mathcal{N}(R_K; \theta, \sigma))$
- After picking a set \mathfrak{S} of points, we can calculate the probability-weighted sum for the expectation. When θ changes a little bit, we can just still get a fairly good approximation by shifting the probability-weight matrix and adding a few new points to \mathfrak{S} .
- It's like sliding window / convolution.

Appendix C

Some remarks for PEDS

$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{pmatrix} \rightarrow \begin{pmatrix} x_{1,1} & x_{1,2} & \cdots & x_{1,m} \\ x_{2,1} & \ddots & & \vdots \\ \vdots & & \ddots & \vdots \\ x_{N,1} & \cdots & x_{N,m} \end{pmatrix} Y_m$$

- $Y_j^{t+1} - Y_j^t = -\gamma(\Omega \Phi(\nabla F; Y_1^t, Y_2^t, \dots, Y_m^t) + \alpha(I - \Omega)Y_j^t), j = 1, \dots, m$
- The original problem in m dimension is embedded into an Nm dimensional space.
- The gradient is projected onto the column space of Ω and the second term, called the **decay function**, ensures that Y_i will also be on the column space of Ω in the long run.
- It is proved that this keeps local minimum and saddle points and it transforms local maximum to be saddle points (Caravelli et al. 2023).

Appendix C

One particular case for PEDS

- $Y_j^{t+1} - Y_j^t = -\gamma \left(\Omega \Phi(\nabla F; Y_1^t, Y_2^t, \dots, Y_m^t) + \alpha(I - \Omega)Y_j^t \right)$
- where $\Phi(\nabla F; Y_1, Y_2, \dots, Y_m)_i = \nabla F \left((m_{i,1}, m_{i,2}, \dots, m_{i,m})^T \right) = \nabla F(R_i)$,
- $\Omega = \Omega_1 = \frac{1}{N} \begin{pmatrix} 1 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \cdots & 1 \end{pmatrix}$.