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Projective Embeddings of Dynamical System (PEDS)
(Caravelli et al. 2023)

• The optimization problem is: , where .


• Extend the variable to . Denote the column vector by .


• The update for  is then


• ,


• where  is a projection matrix, i.e. ,  is called matrix map,  is the 
learning rate, and  is some hyper parameter.
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PEDS as particle interactions

• , for 


• For a particular choice of  and , it can be shown that the update is 
equivalent to (see write-up for details)


• , for ,


• where  is the row vector of  and  , namely the center of mass.
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For a particular case in PEDS
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Inspiration for SA-PEDS

• 


• Instead of treating  as deterministic, we treat it as samples from a distribution.


• For  be drawn from , the first term is the empirical approximation of 
. Here,  is the center of mass, similar to .


• The second term pulls all the particles to their center of mass, which is 
equivalent to decrease the variance of next samples, i.e. decrease .


• Stochastic Approximation Algorithm deals with .
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How PEDS can be seen as a Stochastic Approximation algorithm



SA-PEDS

• Target: , subject to .


• Given 


• For 


• Draw  samples  from .


• Compute the gradient  and update .


• Shrink , where  is some fixed parameter


• The last  is our minimizer.
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Stochastic Approximation Projective Embedding of Dynamical Systems



Quick demonstration of SA-PEDS
On Ackley function



Intuitions for SA-PEDS
Why this methods can work?
• For , we have


• ,


• where  (up to constants)


• This is as smooth as the Gaussian density function


• This is also called Randomized Smoothing, in the context of non-smooth 
Stochastic Gradient Descent (Duchi et al. 2012).

R ∼ 𝒩(θ, σ)

𝔼∇F(R) = ∫ ∇F(R)𝒩(R; θ, σ2I)dR = ∫ ∇F(R)ρ(θ − R)dX = ∇F * ρ(θ)

ρ(X) ≈ e−∥X∥2



Experiments
• Test function: Ackley function


• Approaches:


• Restart: take different initial values and optimize.


• PEDS: the original PEDS algorithm


• SA-PEDS: the algorithm we proposed


• Interesting variables:


• Success rate: if any particle finds the global min


• Convergence time: how long does the convergence take

Code: https://github.com/charliezchen/SA-PEDS



Experiments (m=2, N=20)

Restart PEDS SA-PEDS



PEDS SA-PEDS

Only showing first two coordinates, instead of all 10 coordinates.
Experiments (m=10, N=20)



Experiments Results

Restart PEDS SA-PEDS

The success rate on increasing  (x-axis) and  (y-axis)N m



Experiments Results
How expensive is SA-PEDS?

Comparison of success rate and 
average time for SA-PEDS (m=128)



Discussions
• Inspired by PEDS, we proposed SA-PEDS, which achieves successful 

convergence behavior on the Ackley function.


• SA-PEDS is for a particular case of PEDS. It’s not a strict generalization.


• If the signal is in high-frequency (e.g. Rosenbrock function), PEDS and SA-
PEDS don’t work (preliminary results).


• PEDS and SA-PEDS are sensitive on the value of  (decreasing rate of 
variance/the attraction force).


• Study this algorithm using particle theory and send  to infinity.

α

N
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Appendix A
The choice of optimizer

• For SA-PEDS, the variance of gradient will cause large wiggling effect for 
Vanilla Gradient Descent. Using Adam solves this problem.


• For PEDS with large , choosing small  and using Adam improves the result.m α

SA-PEDS with VGD PEDS with Adam



Appendix B
Accelerating SA-PEDS by importance sampling

• By importance sampling, the expectation of gradient can be evaluated as:


• 


• After picking a set  of points, we can calculate the probability-weighted 
sum for the expectation. When  changes a little bit, we can just still get a 
fairly good approximation by shifting the probability-weight matrix and adding 
a few new points to .


• It’s like sliding window / convolution.

𝔼∇F(R) = (∇F(R1) ∇F(R2) … ∇F(RK))T (𝒩(R1; θ, σ) 𝒩(R2; θ, σ) … 𝒩(RK; θ, σ))
𝔖

θ

𝔖



• , 


• The original problem in  dimension is embedded into an  
dimensional space.


• The gradient is projected onto the column space of  and the second 
term, called the decay function, ensures that  will also be on the 
column space of  in the long run.


• It is proved that this keeps local minimum and saddle points and it 
transforms local maximum to be saddle points (Caravelli et al. 2023).
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Appendix C
One particular case for PEDS

• 


• where  , 


• .
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