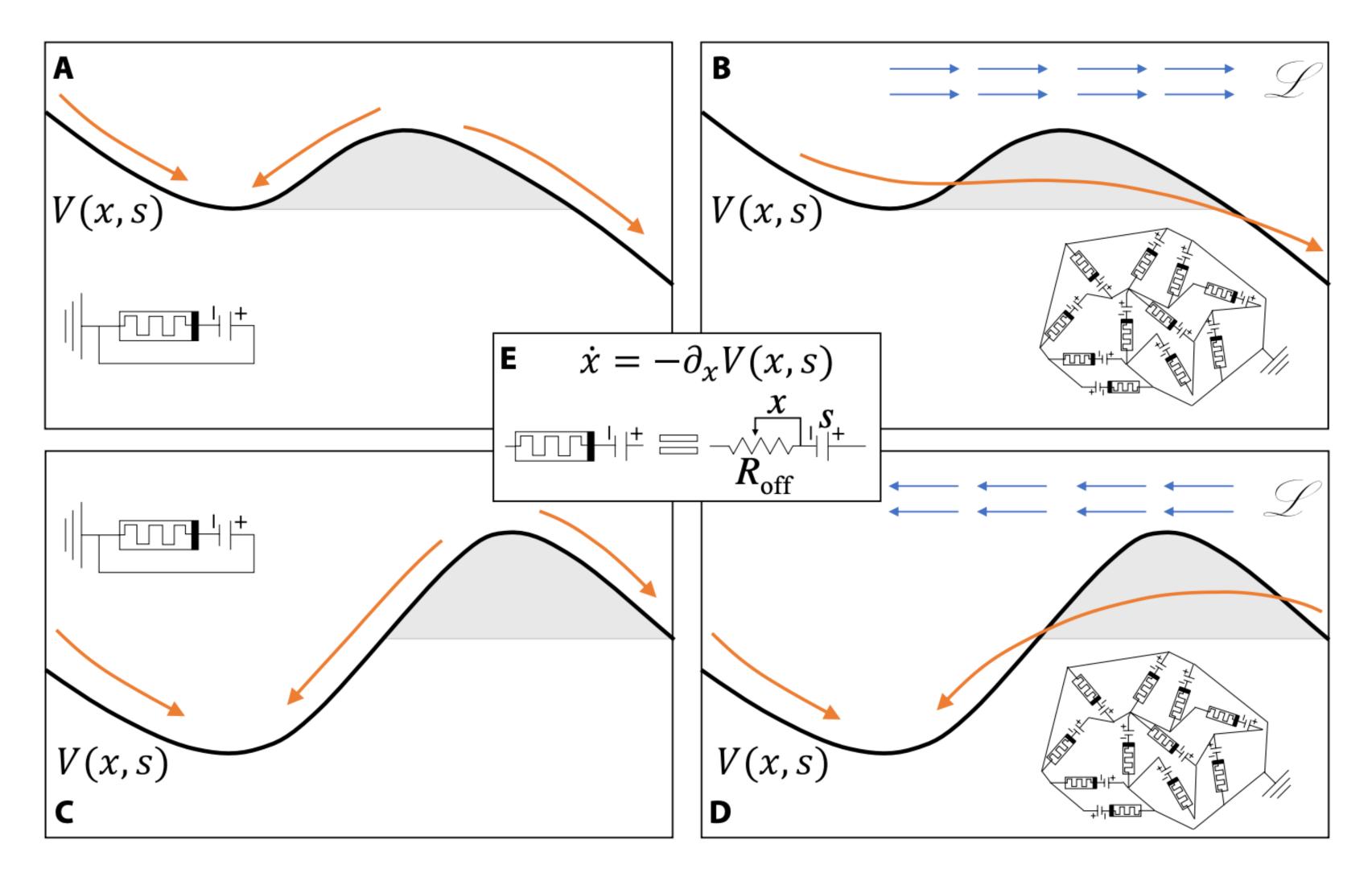
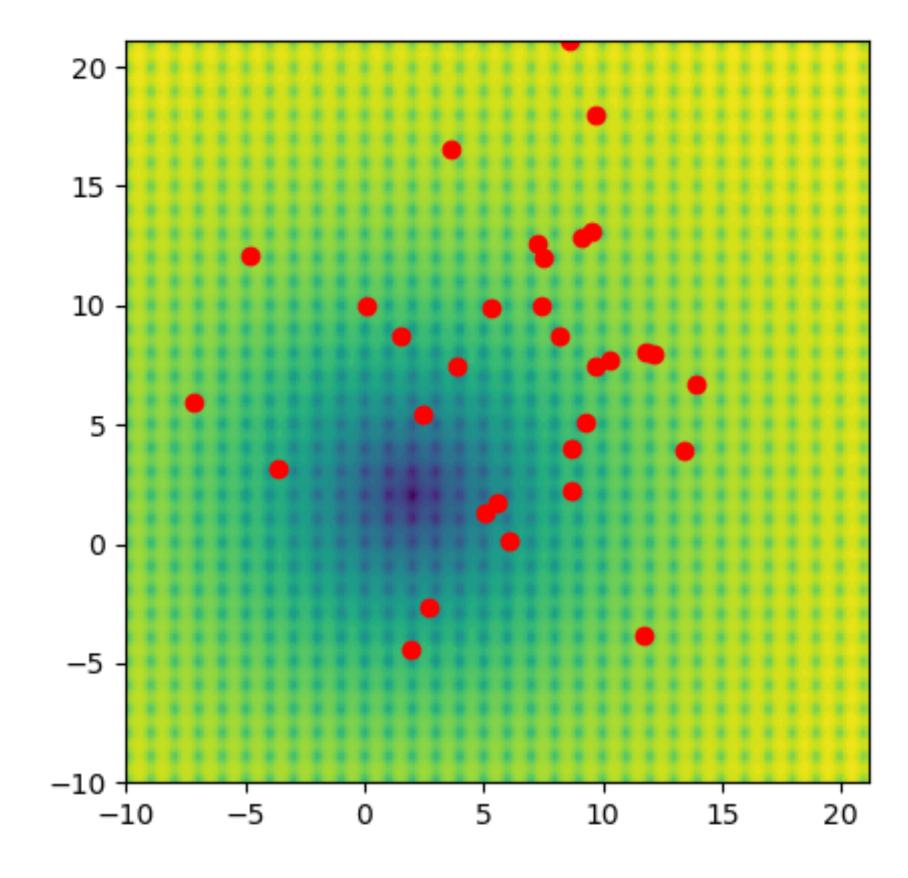
On the global minimum convergence of non-convex deterministic functions via Stochastic Approximation

Charlie Chen (mentors: Prof. Stefano Martiniani and Dr. Guanming Zhang) July 27



(Caravelli et al. 2021)

Quick demonstration of restart strategy On Ackley function



Content

- Projective Embeddings of Dynamical Systems (PEDS)
- PEDS as particle interactions
- Inspiration for SA-PEDS
- Algorithm: SA-PEDS
- Intuitions for SA-PEDS
- Experiments
- Discussions

Projective Embeddings of Dynamical System (PEDS) (Caravelli et al. 2023)

- The optimization problem is: min F(X)
- Extend the variable to $M \in \mathbb{R}^{N \times m}$. Denote the column vector by $Y_i = M[:, j]$.
- The update for Y_i^t is then

•
$$Y_j^{t+1} - Y_j^t = -\gamma(\Omega \Phi(\nabla F; Y_1^t, Y_2^t, ..., Y_m^t) + \alpha(I - \Omega)Y_j^t),$$

learning rate, and α is some hyper parameter.

$$X$$
), where $X \in \mathbb{R}^m$.

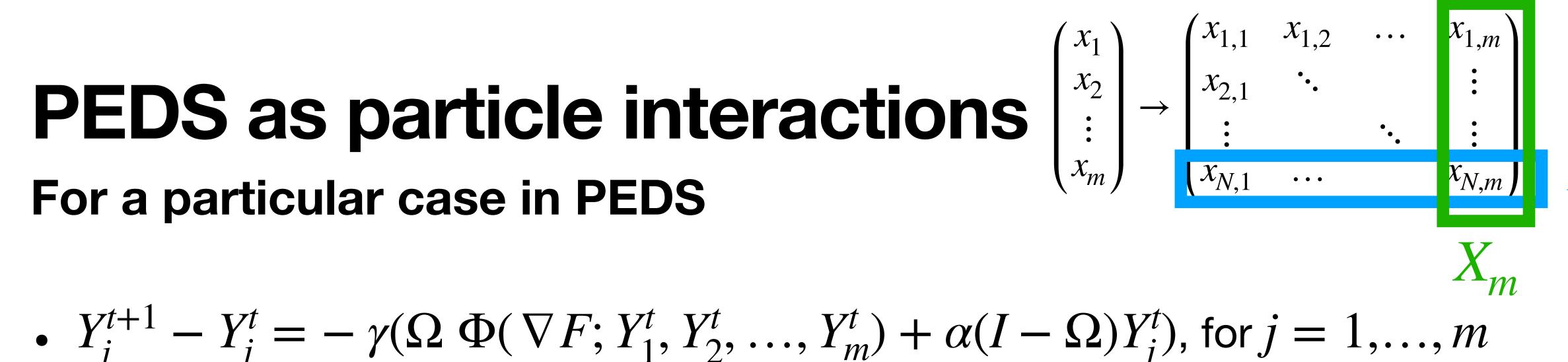
$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{pmatrix} \rightarrow \begin{pmatrix} x_{1,1} & x_{1,2} & \dots & x_1 \\ x_{2,1} & \ddots & & \\ \vdots & & \ddots & \\ x_{N,1} & \dots & & x_N \end{pmatrix}$$

• where Ω is a projection matrix, i.e. $\Omega^2 = \Omega$, Φ is called **matrix map**, γ is the

•
$$Y_j^{t+1} - Y_j^t = -\gamma(\Omega \Phi(\nabla F; Y_1^t, Y_2^t, ..., Y_1^t))$$

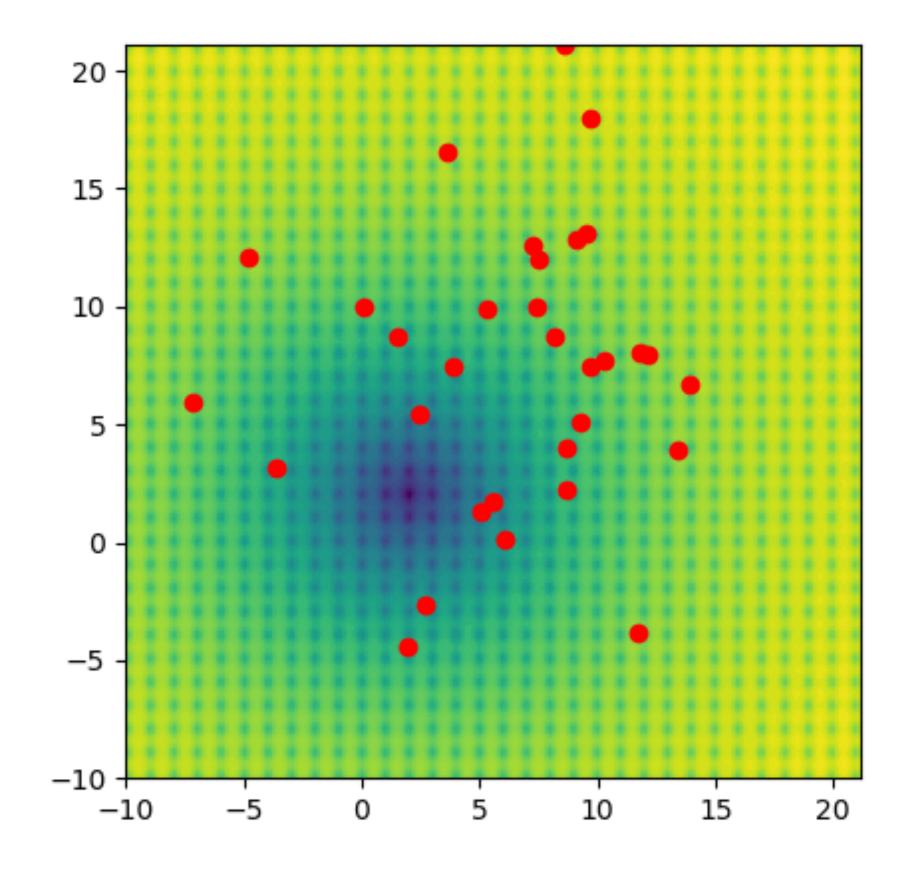
• For a particular choice of Ω and Φ , it can be shown that the update is equivalent to (see write-up for details)

•
$$R_i^{t+1} - R_i^t = -\gamma \left(\frac{1}{N} \sum_{i=1}^N \nabla F(R_i^t) + \alpha (R_i^t - \overline{R}^t) \right)$$
, for $i = 1, ..., N$,



where R_i is the row vector of M and $\overline{R} = \frac{1}{N} \sum_{i=1}^{N} R_i$, namely the center of mass.

Quick demonstration of PEDS On Ackley function



Inspiration for SA-PEDS $\int \mathbf{1} N$

$$R_i^{t+1} - R_i^t = -\gamma \left(\frac{1}{N}\sum_{i=1}^{1}\nabla F(R_i^t) + \frac{1}{N}\sum_{i=1}^{1}\nabla F(R_i^t)\right)$$

- For R_i be drawn from $\mathcal{N}(\theta, \sigma^2)$, the first term is the empirical approximation of $\mathbb{E}_{R \sim \mathcal{N}(\theta, \sigma)} \nabla F(R)$. Here, θ is the center of mass, similar to \overline{R} .
- The second term pulls all the particles to their center of mass, which is equivalent to decrease the variance of next samples, i.e. decrease σ .
- Stochastic Approximation Algorithm deals with $f(\theta) = \mathbb{E}_{\mathcal{E}}F(\theta, \xi)$.

How PEDS can be seen as a Stochastic Approximation algorithm $Y(R_i^t) + \alpha(R_i^t - \overline{R}^t)$

• Instead of treating R_i as deterministic, we treat it as samples from a distribution.

SA-PEDS

- Target: min $\mathbb{E}F(R)$, subject to $R \sim \mathcal{N}(\theta, \sigma)$.
- Given $\theta_0, \sigma_0, \gamma, \eta$
- For $t = 0, 1, 2, ..., T_{max}$ or stopping condition is met
 - Draw N samples R_1^t, \ldots, R_N^t from $\mathcal{N}(\theta,$

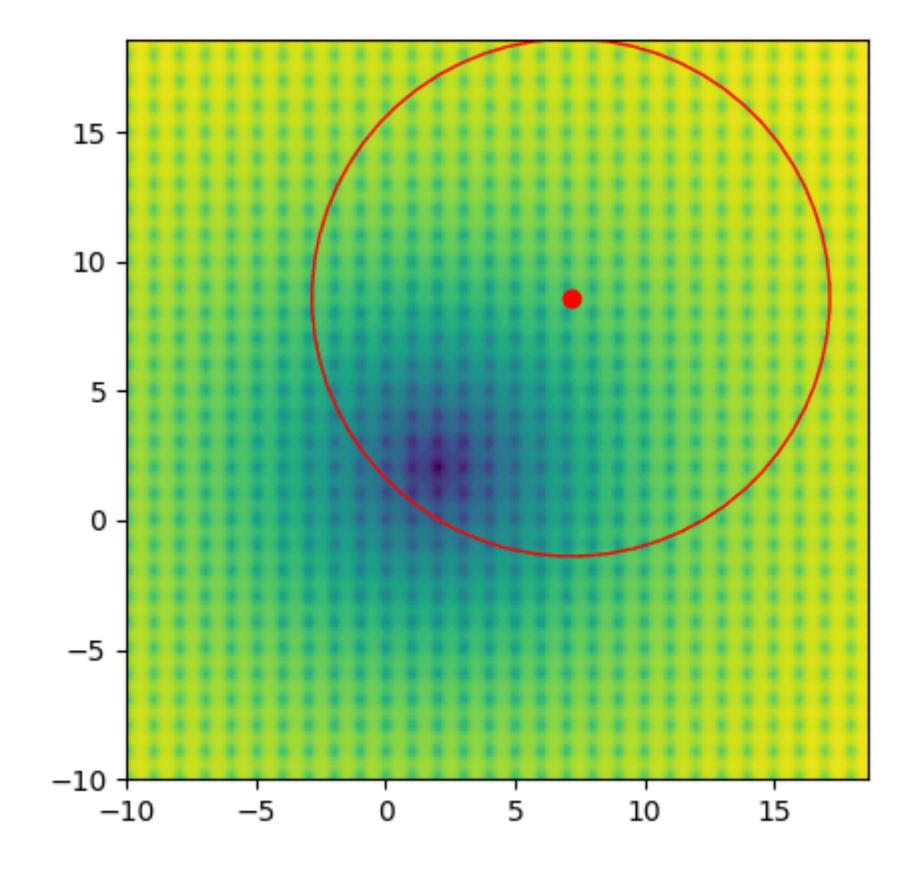
• Compute the gradient $g_t = \frac{1}{N} \sum_{i=1}^{N} \nabla F(R_j^t)$ and update $\theta_{t+1} = \text{optim}(\theta_t, g_t, \gamma)$.

- Shrink $\sigma_{t+1} = \max(\sigma_t \alpha, 0)$, where α is some fixed parameter
- The last θ is our minimizer.

Stochastic Approximation Projective Embedding of Dynamical Systems

$$\sigma^2$$
).

Quick demonstration of SA-PEDS On Ackley function



Intuitions for SA-PEDS Why this methods can work?

• For $R \sim \mathcal{N}(\theta, \sigma)$, we have

$$\mathbb{E}\nabla F(R) = \int \nabla F(R)\mathcal{N}(R;\theta,\sigma^2 I)dR = \int \nabla F(R)\rho(\theta-R)dX = \nabla F*\rho(\theta)$$

• where
$$\rho(X) \approx e^{-\|X\|^2}$$
 (u

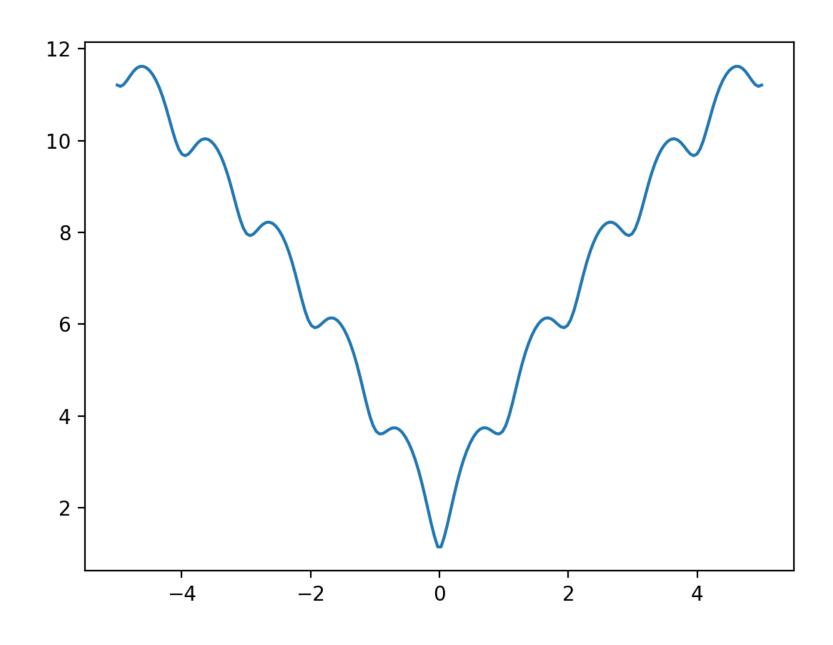
- This is as smooth as the Gaussian density function
- This is also called Randomized Smoothing, in the context of non-smooth Stochastic Gradient Descent (Duchi et al. 2012).

p to constants)

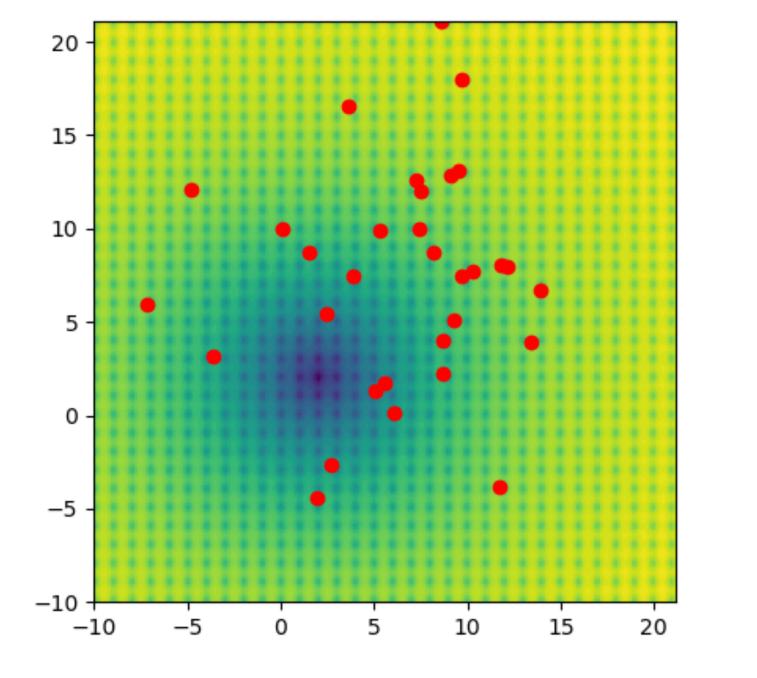
Experiments

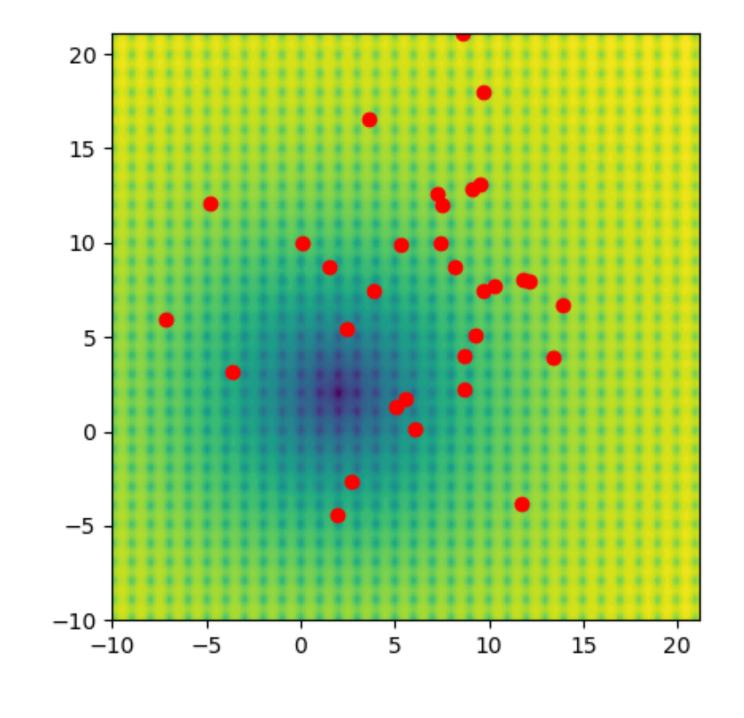
- Test function: Ackley function
- Approaches:
 - Restart: take different initial values and optimize.
 - PEDS: the original PEDS algorithm
 - SA-PEDS: the algorithm we proposed
- Interesting variables:
 - Success rate: if any particle finds the global min
 - Convergence time: how long does the convergence take

Code: https://github.com/charliezchen/SA-PEDS



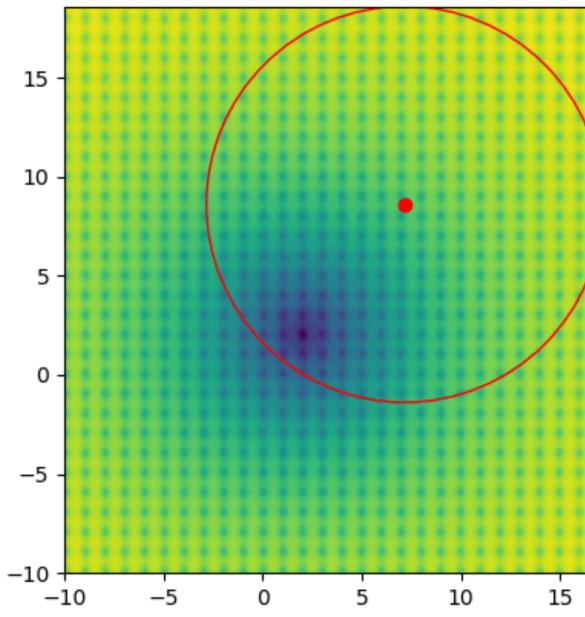
Experiments (m=2, N=20)



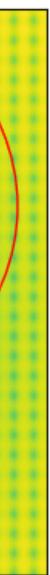


PEDS

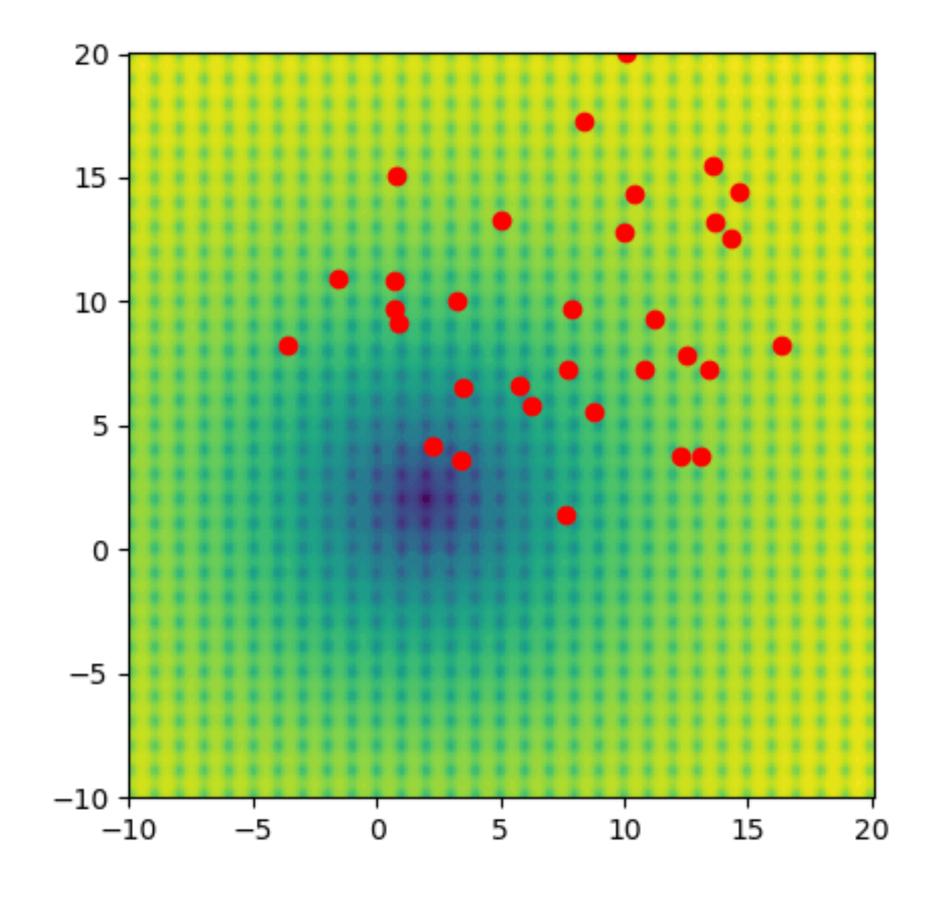
Restart



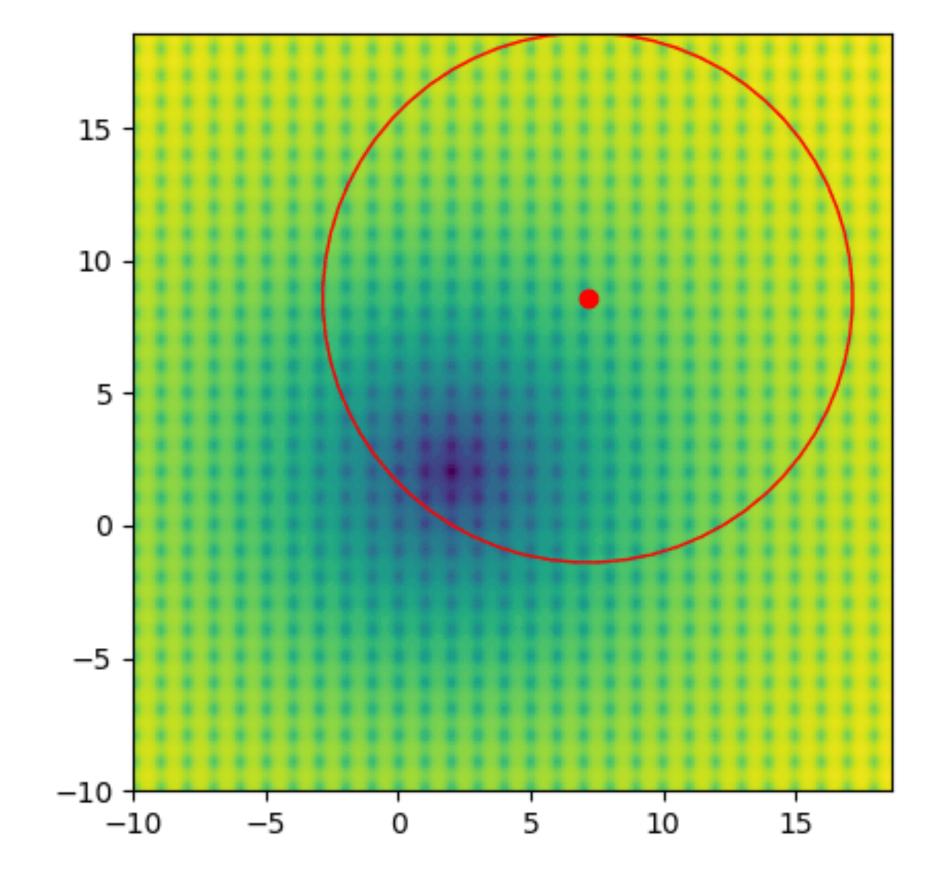
SA-PEDS



Experiments (m=10, N=20) Only showing first two coordinates, instead of all 10 coordinates.

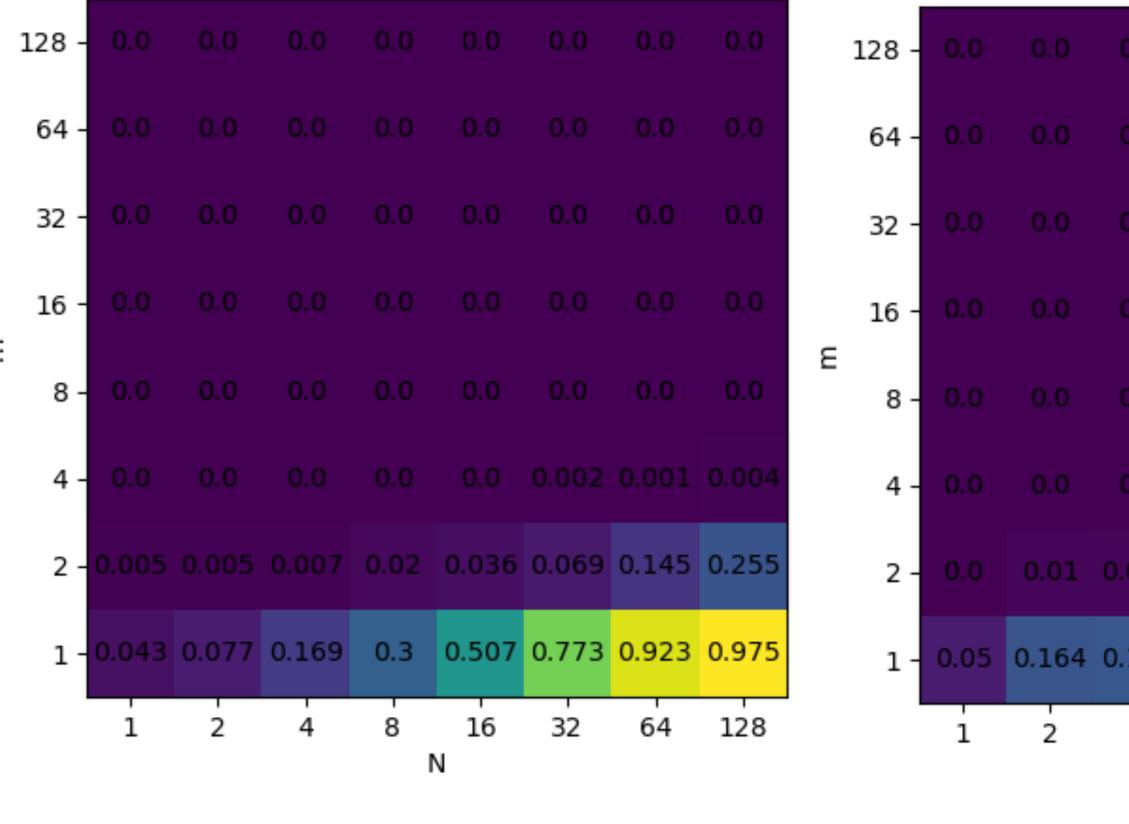


PEDS



SA-PEDS

Experiments Results The success rate on increasing *N* (x-axis) and *m* (y-axis)



Restart

Ε

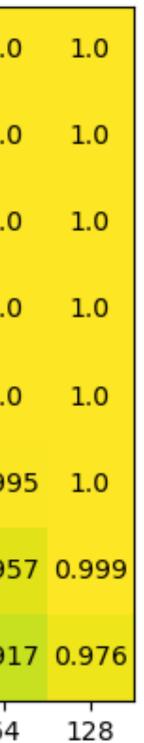
4	8	16 N	32	64	128
169	0.196	0.232	0.363	0.509	0.623
	0.017	0.03	0.037	0.051	0.082
					0.0
					0.0
					0.0
					0.0
					0.0
					0.0

Ε

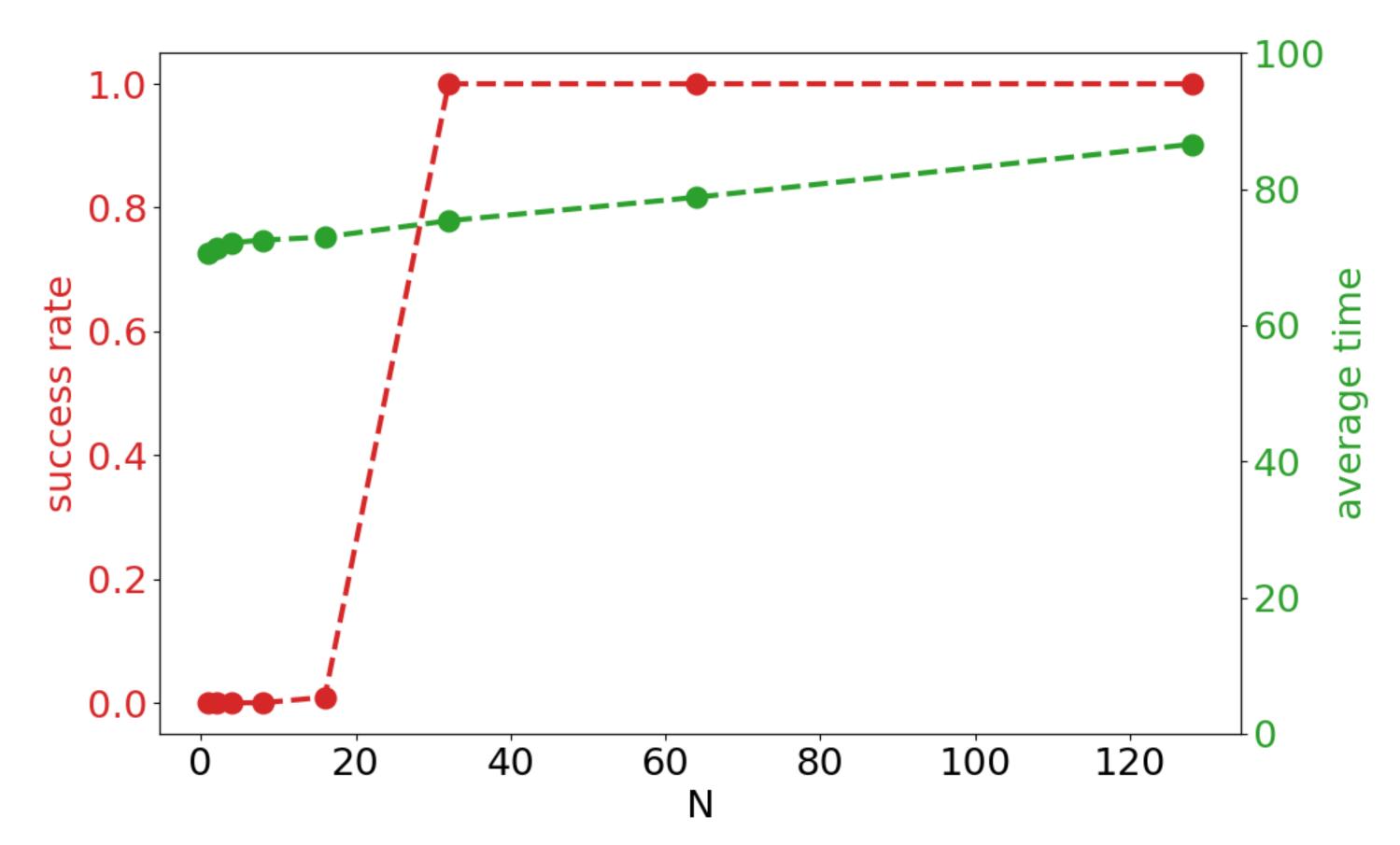
		1	2	4	8	16 N	32	64
	1 -	0.137	0.187	0.316	0.472	0.633	0.832	0.9
	2 -	0.04	0.071	0.17	0.343	0.621	0.824	0.9
	4 -	0.002	0.013	0.072	0.27	0.521	0.839	0.9
	8 -			0.012	0.141	0.428	0.897	1.
	16 -				0.033	0.362	0.948	1.
	32 -					0.219	0.984	1.
	64 -					0.07	0.998	1.
	128 -						1.0	1.

SA-PEDS

PEDS



Experiments Results How expensive is SA-PEDS?



Comparison of success rate and average time for SA-PEDS (m=128)

Discussions

- Inspired by PEDS, we proposed SA-PEDS, which achieves successful convergence behavior on the Ackley function.
- SA-PEDS is for a particular case of PEDS. It's not a strict generalization.
- PEDS don't work (preliminary results).
- PEDS and SA-PEDS are sensitive on the value of α (decreasing rate of variance/the attraction force).
- Study this algorithm using particle theory and send N to infinity.

If the signal is in high-frequency (e.g. Rosenbrock function), PEDS and SA-

Acknowledgement This research would not be possible without the support of

- Courant Institute of Mathematical Science
 - For organizing the events
- Simons Center for Computational Physical Chemistry
 - For funding
- NYU High Performance Computing Greene
 - For computation resources

Reference

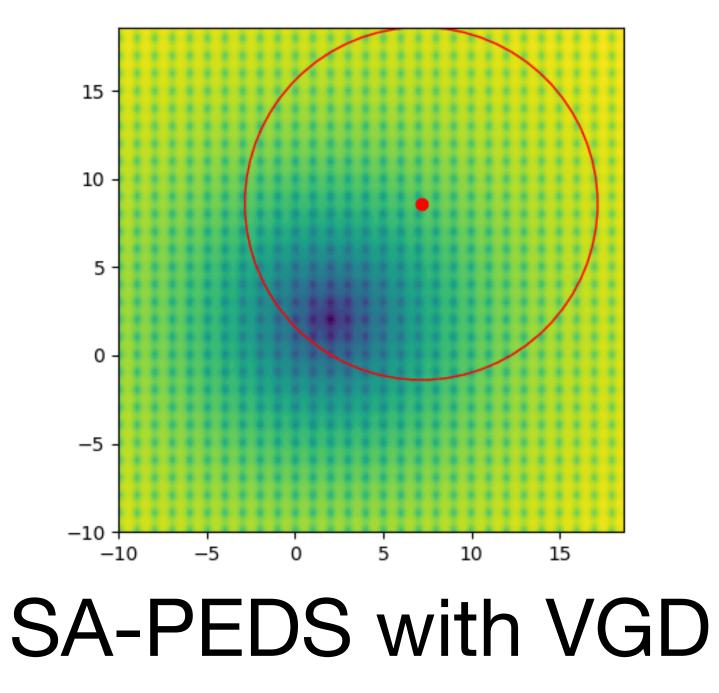
- Caravelli, Francesco, Forrest C. Sheldon, and Fabio L. Traversa. "Global minimization via classical tunneling assisted by collective force field formation." Science Advances 7.52 (2021): eabh1542.
- 133747.
- (2012): 674-701.

• Caravelli, Francesco, et al. "Projective embedding of dynamical systems: Uniform mean field equations." Physica D: Nonlinear Phenomena 450 (2023):

 Duchi, John C., Peter L. Bartlett, and Martin J. Wainwright. "Randomized smoothing for stochastic optimization." SIAM Journal on Optimization 22.2

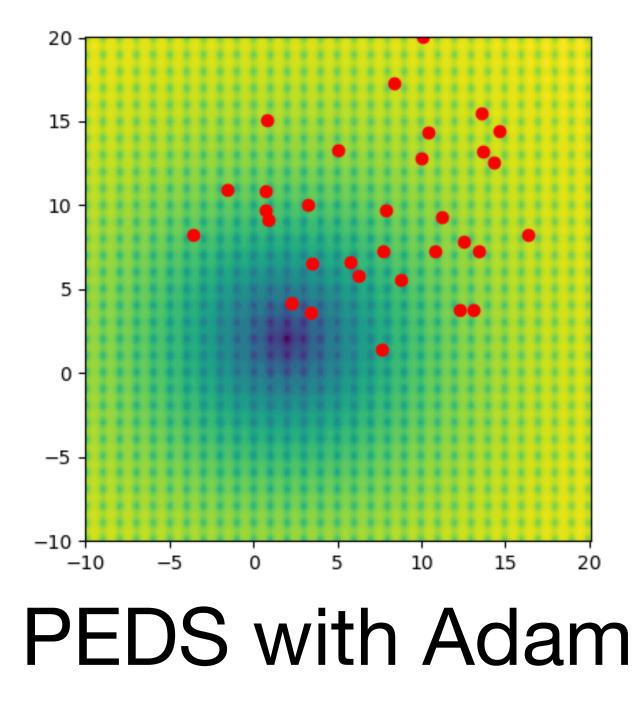
Appendix A The choice of optimizer

- Vanilla Gradient Descent. Using Adam solves this problem.



• For SA-PEDS, the variance of gradient will cause large wiggling effect for

• For PEDS with large m, choosing small α and using Adam improves the result.



Appendix B Accelerating SA-PEDS by importance sampling

- a few new points to \mathfrak{S} .
- It's like sliding window / convolution.

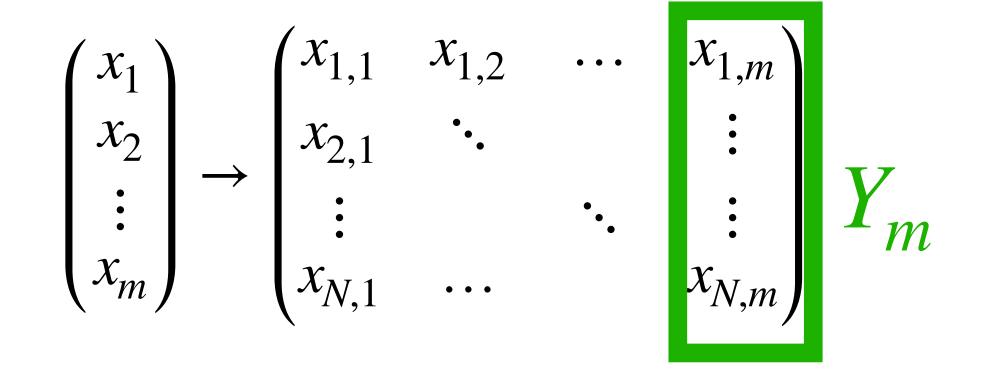
• By importance sampling, the expectation of gradient can be evaluated as: • $\mathbb{E}\nabla F(R) = \left(\nabla F(R_1) \quad \nabla F(R_2) \quad \dots \quad \nabla F(R_K)\right)^T \left(\mathcal{N}(R_1;\theta,\sigma) \quad \mathcal{N}(R_2;\theta,\sigma) \quad \dots \quad \mathcal{N}(R_K;\theta,\sigma)\right)$

• After picking a set \mathfrak{S} of points, we can calculate the probability-weighted sum for the expectation. When θ changes a little bit, we can just still get a fairly good approximation by shifting the probability-weight matrix and adding

Appendix C **Some remarks for PEDS**

•
$$Y_j^{t+1} - Y_j^t = -\gamma(\Omega \Phi(\nabla F; Y_1^t, Y_2^t, ..., Y_m^t) + \alpha(I - \Omega)Y_j^t), j = 1, ..., m$$

- The original problem in *m* dimension is embedded into an *Nm* dimensional space.
- The gradient is projected onto the column space of Ω and the second term, called the **decay function**, ensures that Y_i will also be on the column space of Ω in the long run.
- It is proved that this keeps local minimum and saddle points and it transforms local maximum to be saddle points (Caravelli et al. 2023).



Appendix C One particular case for PEDS

•
$$Y_j^{t+1} - Y_j^t = -\gamma \left(\Omega \ \Phi(\nabla F; Y_1^t, Y_2^t) \right)$$

• where $\Phi(\nabla F; Y_1, Y_2, \dots, Y_m)_i = \nabla Y_i$
• $\Omega = \Omega_1 = \frac{1}{N} \left(\begin{array}{c} 1 \cdots 1 \\ \vdots & \ddots & \vdots \\ 1 \cdots 1 \end{array} \right)$

