Chirality in Modelling of Nodal Cilia Movement

Khola Jamshad
With Mentor Charles S. Peskin
AM-SURE 2021
Courant Institute of Mathematical Sciences, NYU
29 July 2021

Introduction

Purpose

Modelling and analyzing the expression of *chirality* in the whirling movement of *nodal cilia*

Definitions

Nodal cilia: finger like structures in embryos Chirality: handedness

Significance

Breaking of left/right symmetry in embryos

[1] Nonaka S, Yoshiba S, Watanabe D, Ikeuchi S, Goto T, Marshall WF & Hamada H. (2005). De novo formation of left-right asymmetry by posterior tilt of nodal cilia. *PLoS Biol.*, 3, e268, https://embryology.med.unsw.edu.au/embryology/index.php/Nodal_Cilia_Movie.

- Central pair of microtubules = Central vector
- 9 peripheral doublet microtubules

Structure of Non-Nodal Cilia³

Modelling Assumptions

Inextensible microtubules Central vector tip centroid

Geometric Constraint

Upper polygon moves only by translation

Dynein motor protein links = Wires with tension X,Y,Z

Cilia Structure: "9+2" [2] Model:Single Cilium Unit

[2] Han and Peskin. Spontaneous Oscillation and Fluid-Structure Interaction of Cilia, PNAS, 2018.

0

$$\frac{dX}{dt} = \frac{1}{\zeta} \left(A(t) - \frac{1}{H^2} \left(A(t)X(t) + B(t)Y(t) \right) X(t) \right)$$

$$\frac{dY}{dt} = \frac{1}{\zeta} \left(B(t) - \frac{1}{H^2} \left(A(t)X(t) + B(t)Y(t) \right) Y(t) \right)$$

$$\frac{dT_j}{dt} = \beta \left(KL_j^2(t) - T_j(t) \right)$$

$$A(t) = \sum_{j=0}^{n-1} \left\{ \frac{T_j(t)}{L_j(t)} R\left(\cos\left(\frac{2\pi}{n}(j+1)\right) - \cos\left(\frac{2\pi}{n}j\right) \right) \right\}$$

$$B(t) = \sum_{j=0}^{n-1} \left\{ \frac{T_j(t)}{L_j(t)} R\left(sin\left(\frac{2\pi}{n}(j+1)\right) - sin\left(\frac{2\pi}{n}j\right) \right) \right\}$$

Model

Notation

 $T_j(\mathbf{t})$: Tensions in wire j

X(t), Y(t): Central vector coordinates

H: Length of central vector

 $L_j(X(t), Y(t))$: Length of wire j

n: Number of wires

R: Radius of circle

 ζ , β , K: constants

Simulation of Movement

Whirling of nodal cilia visualization [3]

Our simulation of cilia movement

[3] "How Your Body Knows Left From Right." *YouTube,* uploaded by It's Okay To Be Smart, 19 July 2014, https://www.youtube.com/watch?v=oGahCXE18Ko&t=216s.

0.05

Unstable Cycles

500

600

-0.08

-0.1 ^{_} -0.1

-0.05

X(t)

700

Case B: goes to maximum amplitude oscillations

time

400

300

-0.1

100

200

Bistability

Subcritical Hopf Bifurcation

Bi-stability

Parameter interval in which stable max-amplitude cycle coexists with stable steady state

Notation

$$\gamma = \frac{2rC}{H^2 + C^2}$$

r = radius of cycle

Chirality Not Expressed in Movement

Simulation 1

$$X(0) = X^0$$

$$Y(0) = Y^0$$

$$T_j(0) = T_j^0$$

Simulation 2

$$X(0) = -X^0$$
$$Y(0) = Y^0$$

$$Y(0) = Y^0$$

$$T_j(0) = T_{-j-1}^0$$

Future Work

1. Stabilizing Limit Cycles

G = (0,0,g); g: non-zero constant

Find non-maximum amplitude limit cycles by applying constant force to central vector in to vertical position

2. Expressing Chirality

- Nodal cilia structure "9+0"
- Reduce geometric constraint:
 - Twisting upper polygon
 - Resistance to twisting in wires

Email: kj1263@nyu.edu