
Controlling a Stochastic Harmonic Oscillator

Joonsoo Lee, Georg Stadler, Shanyin Tong

July 27, 2023

Abstract

We develop a method to optimize the probability of extreme events associated with

stochastic systems. Specifically, we examine methods for a stochastically forced harmonic

oscillator to hit extreme event regions. We proceed to focus on strategies that are scalable,

i.e. their efficiency does not degrade upon spatial and temporal refinement.

1 Introduction

Our study is motivated by chance constrained optimization problems of the following form.

min
u
J(u) (1)

s.t. P[F (u, ξ) ≥ z] ≤ α. (2)

There exists a method to solve this for low dimensional randomness, as seen in [11], but we aim

to provide a scalable framework to tackle the optimization. The most common high dimensional

randomness one would encounter is Brownian motion. For this project, we consider a stochas-

tically forced harmonic oscillator with damping, where m > 0 is the mass, u the parameters we

wish to control, and γ > 0 the damping coefficient:

mϕ′′ + γϕ′ +G(ϕ, u) = ση(t). (3)

Here, G(ϕ, u) is a combination of the nonlinear and deterministic forcing term. The initial

conditions ϕ(0) and ϕ′(0) can also depend on u.

2 Probability Approximation

We wish to compute the probability (2) using the scalable path space probability estimation

from [9]:

P[F (ϕ, ψ) ≥ z] −−→
σ→0

(2π)−1/2CF (z) exp (−IF (z)). (4)
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The real valued functions CF (z) is called the prefactor and IF is called the rate function. In

our case, these functions are defined

IF (z) =
1

2
∥ηz(t)∥2L2 , (5)

CF (z) = [2IF (z) det (1N×N − λzprη⊥z ∇
2F (ηz)prη⊥z )]

−1/2, (6)

prη⊥z = 1N×N − ηz ⊗ ηz
||ηz||2

. (7)

The first step to obtain the values of the prefactor and rate function is to find the optimal

forcing ηz(t), which can be found by solving a PDE constrained optimization problem. ηz(t)

represents the least costly forcing that results in F (u, ξ) ≥ z being satisfied. Next, we use a

random svd algorithm, shown in [4], to compute the determinant of the operator in (6). Then

we are able to calculate an accurate probability estimation for small probabilities. Finally,

using jax autodiff, we are able to also compute the gradient of these probability estimations.

3 Results

In Figure 1, we illustrate a comparison of the probability approximations and probabilities found

through sampling. The blue shading shows the 95% confidence interval of the true probability.

Figure 1: LDT approximation and sampling probability values with γ = 1.5, m = 1, σ = 1,

N = 500, T = 5.
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