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What are internal waves?

Internal Wave: A wave that propagates within a stratified fluid
Stratified Fluid: A fluid whose density varies with height
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Why do these waves occur?

Internal waves form in stratified fluids, whose density increases with depth
In the ocean, density varies due to temperature and salinity
Perturb water particle =⇒ oscillations
Existing theory on internal waves in constant or spatially-dependent
stratifications

What if the stratification depends on time?

We can answer this mathematically, by deriving the PDE that governs
internal waves and analyzing its solutions!
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Note on Necessary Variables

We consider a 2-D problem in x , z , with time variable t

ϵ ≪ 1 scaling parameter
Stream function Ψ(x , z , t) = Ψ̄(x , z , t) + ϵΨ′(x , z , t)

Ψ̄: large-scale, mean flow =⇒ 0
Ψ′: fine-scale oscillations, related to velocity field of the wave

Density ρ(x , z , t) = ρ̄(z , t) + ϵρ′(x , z , t)

ρ̄: large-scale, background stratification
ρ′: fine-scale variations to this background stratification

Brunt-Väisälä frequency N =
√
− g

ρ0
∂z ρ̄

Proportional to background density term ∂z ρ̄
Describes frequency of oscillations
Stratification parameter

Buoyancy b = − g
ρ0
ρ′

Proportional to fine-scale density term ρ′
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The PDE

From the inviscid Navier-Stokes equations, mass conservation law, and
incompressibility law we can derive the Nonlinear Internal Wave PDE:{

∂t∆Ψ− ∂xb = −ϵJ(Ψ,∆Ψ)

∂tb + N2∂xΨ = −ϵJ(Ψ, b)

where ∆ = ∂2
x + ∂2

z , and J(f , g) = ∂x f ∂zg − ∂z f ∂xg .

The ϵ scale controls the strength of nonlinearity. Setting ϵ = 0, we recover
the Linear Internal Wave PDE:

∂2
t∆Ψ+ N2∂2

xΨ = 0

How does setting N = N(t) affect the solution Ψ?
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Constant Stratification

Suppose N = N0 is constant:

∂2
t∆Ψ+ N2

0∂
2
xΨ = 0

We can solve using Fourier transform in all variables and find

Ψ(x , z , t) = Ψ0 exp(i(ωt − kxx − kzz))

Constant amplitude Ψ0

Constant temporal and spatial frequencies ω and k = (kx , kz)

The wave’s temporal and spatial frequencies are related by the dispersion
relation:

ω2|k|2 = N2
0k

2
x

which tells us that these waves only propagate if ω ≤ N0
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Time-dependent Stratification

Suppose our background density varies with time:

∂2
t∆Ψ+ N2(t)∂2

xΨ = 0

Using spatial Fourier transform and assuming that the stratification is
sufficiently slow-varying, we find:

Ψ(x , z , t) = Ψ0(t) exp (−i(kxx + kzz))

where

Ψ0(t) =
A0

√
k√

N(t)
exp

(
i
kx
k

∫
N(t)dt

)

Slow-varying envelope A(t) ≈ 1√
N(t)

Fast-varying oscillations set by
kx
k

∫
N(t)dt
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Effect of slow time-dependence

Using simple stratifications N0 = 1 and N(t) = 0.2 + t, we can visualize
how a time-dependent stratification will affect the shape of the wave:
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Mathieu’s equation

Suppose our time-dependent stratification has small oscillations, such that
N2(t) = N2

0 (1 + ϵ cos t):

∂2
t∆Ψ+ N2

0 (1 + ϵ cos t)∂2
xΨ = 0

Then we can study Mathieu’s equation on the time-dependent part of the
wave:

Ψ′′
0(t) +

k2
x

k2N
2
0 (1 + ϵ cos t)Ψ0(t) = 0

with first-order solution

Ψ0(t) = A(t) cos

(
kxN0

k
t

)
+ B(t) sin

(
kxN0

k
t

)
Mathieu’s equation allows for parametric resonance:

ϵ ≈ 0 =⇒ Ψ0 stable, unless kxN0
k = 1

4

ϵ > 0 =⇒ regions of stability, dependent on the ratio of ϵ and kxN0
k
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Mathieu’s: Stability

Stable amplitude (ϵ = 0.2, N
2
0k

2
x

k2 = 0.3): beating envelope

Unstable amplitude (ϵ = 0.2, N
2
0k

2
x

k2 = 0.25): exponentially growing
envelope
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Nonlinear Effect: Self-Interaction

Recall the full nonlinear PDE:{
∂tb + N2∂xΨ = −ϵJ(Ψ, b)

∂t∆Ψ− ∂xb = −ϵJ(Ψ,∆Ψ)

We study interactions between two waves Ψ1 and Ψ2 by analyzing
their sum Ψ = Ψ1 +Ψ2

Nonlinear terms =⇒ self-interaction: a single wave can interact with
itself and generate other waves at resonant frequencies

If N = N0 or N(t) =⇒ J(Ψ,∆Ψ) = J(Ψ, b) = 0
No self-interaction in time-dependent stratifications
The linear solution is a solution of the nonlinear PDE
To see self-interaction, we need stratifications that depend on space
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Time- and space- dependent stratification

Suppose we have a time- and space-dependent stratification N = N(z , t):

∂2
t∆Ψ+ N2(z , t)∂2

xΨ = 0

If we assume also that N(z , t) = f (t)g(z), then we can use partial Fourier
transform and separation of variables to find

Ψ(x , z , t) = F (t)G (z) exp(−ikxx)

where

F (t) ≈ 1√
f (t)

exp

(
i

∫
f (t)dt

)
G (z) ≈ 1

(g2(z)− 1)1/4
exp

(
−i

∫ √
g2(z)− 1dz

)
Oscillatory part set by Φ =

∫
f (t)dt −

∫ √
g2(z)− 1dz − kxx
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Nonlinear Effect: N(z , t) = f (t)g(z)

Putting this solution into the nonlinear PDE, we see

∂2
t∆Ψ+ N2(z , t)∂2

xΨ = G0(t, z) + G2(t, z)e
2iΦ + Gα(t, z)e

iΦt−2iΦz + c .c .

̸= 0

where Φ = Φt +Φz =

∫
f (t)dt −

∫ √
g2(z)− 1dz , and

G0(t, z) ∝ g ′(z)

G2(t, z) ∝ g ′(z)

Gα(t, z) ∝ g ′(z)f ′(t)

Turning off z−dependence =⇒ no self-interaction
Turning off t−dependence =⇒ existing solution (Baker 2020)
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Conclusion & Perspectives

Conclusion:
Goal: Develop some theory on internal waves in time-dependent
stratifications
Linear dynamics =⇒ time dependence in wave’s amplitude and
temporal frequency
Nonlinear dynamics =⇒ no self-interaction, unless stratification is
also spatially dependent
Types of nonlinear interactions: self-interaction and generation of
superharmonics, multiple waves and triadic resonant instability

Perspectives & Further work:
More detailed study of nonlinear resonances
Analyze nonlinearities in Mathieu’s case
Analyze system from energetic point of view
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