Internal Waves in Time-Dependent Stratifications

Alison Tatsuoka¹ Samuel Boury²

¹Columbia University

²New York University

July 28, 2022

Internal Wave: A wave that propagates within a stratified fluid **Stratified Fluid**: A fluid whose density varies with height

AMSURE 2022

Internal waves form in stratified fluids, whose density increases with depth

- In the ocean, density varies due to temperature and salinity
- Perturb water particle \implies oscillations
- Existing theory on internal waves in constant or spatially-dependent stratifications

What if the stratification depends on time?

We can answer this mathematically, by deriving the PDE that governs internal waves and analyzing its solutions!

We consider a 2-D problem in x, z, with time variable t

- $\epsilon \ll 1$ scaling parameter
- Stream function $\Psi(x,z,t) = ar{\Psi}(x,z,t) + \epsilon \Psi'(x,z,t)$
 - $\bar{\Psi}$: large-scale, mean flow \implies 0
 - $\Psi^\prime :$ fine-scale oscillations, related to velocity field of the wave

• Density
$$ho(x,z,t) = ar{
ho}(z,t) + \epsilon
ho'(x,z,t)$$

- $\bar{\rho}$: large-scale, background stratification
- $\rho^\prime :$ fine-scale variations to this background stratification
- Brunt-Väisälä frequency $N = \sqrt{-\frac{g}{\rho_0}\partial_z\bar{\rho}}$
 - Proportional to background density term $\partial_z\bar\rho$
 - Describes frequency of oscillations
 - Stratification parameter
- Buoyancy $b = -\frac{g}{\rho_0} \rho'$
 - Proportional to fine-scale density term ρ^\prime

From the inviscid Navier-Stokes equations, mass conservation law, and incompressibility law we can derive the Nonlinear Internal Wave PDE:

$$\begin{cases} \partial_t \Delta \Psi - \partial_x b = -\epsilon J(\Psi, \Delta \Psi) \\ \partial_t b + N^2 \partial_x \Psi = -\epsilon J(\Psi, b) \end{cases}$$

where $\Delta = \partial_x^2 + \partial_z^2$, and $J(f,g) = \partial_x f \partial_z g - \partial_z f \partial_x g$.

The ϵ scale controls the strength of nonlinearity. Setting $\epsilon = 0$, we recover the Linear Internal Wave PDE:

$$\partial_t^2 \Delta \Psi + N^2 \partial_x^2 \Psi = 0$$

How does setting N = N(t) affect the solution Ψ ?

Suppose $N = N_0$ is constant:

$$\partial_t^2 \Delta \Psi + N_0^2 \partial_x^2 \Psi = 0$$

We can solve using Fourier transform in all variables and find

$$\Psi(x,z,t) = \Psi_0 \exp(i(\omega t - k_x x - k_z z))$$

- Constant amplitude Ψ_0
- Constant temporal and spatial frequencies ω and $\mathbf{k} = (k_x, k_z)$

The wave's temporal and spatial frequencies are related by the dispersion relation:

$$\omega^2 |\mathbf{k}|^2 = N_0^2 k_x^2$$

which tells us that these waves only propagate if $\omega \leq \mathit{N}_{0}$

Time-dependent Stratification

Suppose our background density varies with time:

$$\partial_t^2 \Delta \Psi + N^2(t) \partial_x^2 \Psi = 0$$

Using spatial Fourier transform and assuming that the stratification is sufficiently slow-varying, we find:

$$\Psi(x,z,t) = \Psi_0(t) \exp\left(-i(k_x x + k_z z)\right)$$

where

$$\Psi_{0}(t) = \frac{A_{0}\sqrt{k}}{\sqrt{N(t)}} \exp\left(i\frac{k_{x}}{k}\int N(t)dt\right)$$

• Slow-varying envelope
$$A(t) \approx \frac{1}{\sqrt{N(t)}}$$

• Fast-varying oscillations set by $\frac{k_x}{k} \int N(t) dt$

Effect of slow time-dependence

Using simple stratifications $N_0 = 1$ and N(t) = 0.2 + t, we can visualize how a time-dependent stratification will affect the shape of the wave:

Mathieu's equation

Suppose our time-dependent stratification has small oscillations, such that $N^2(t) = N_0^2(1 + \epsilon \cos t)$:

$$\partial_t^2 \Delta \Psi + N_0^2 (1 + \epsilon \cos t) \partial_x^2 \Psi = 0$$

Then we can study Mathieu's equation on the time-dependent part of the wave:

$$\Psi_0''(t) + \frac{k_x^2}{k^2} N_0^2(1 + \epsilon \cos t) \Psi_0(t) = 0$$

with first-order solution

$$\Psi_0(t) = A(t) \cos\left(\frac{k_x N_0}{k}t\right) + B(t) \sin\left(\frac{k_x N_0}{k}t\right)$$

Mathieu's equation allows for parametric resonance:

• $\epsilon \approx 0 \implies \Psi_0$ stable, unless $\frac{k_x N_0}{k} = \frac{1}{4}$

• $\epsilon > 0 \implies$ regions of stability, dependent on the ratio of ϵ and $\frac{k_x N_0}{k}$

Mathieu's: Stability

• Stable amplitude ($\epsilon = 0.2, \frac{N_0^2 k_x^2}{k^2} = 0.3$): beating envelope

• Unstable amplitude ($\epsilon = 0.2, \frac{N_0^2 k_x^2}{k^2} = 0.25$): exponentially growing envelope

Recall the full nonlinear PDE:

$$\begin{cases} \partial_t b + N^2 \partial_x \Psi = -\epsilon J(\Psi, b) \\ \partial_t \Delta \Psi - \partial_x b = -\epsilon J(\Psi, \Delta \Psi) \end{cases}$$

- We study interactions between two waves Ψ_1 and Ψ_2 by analyzing their sum $\Psi=\Psi_1+\Psi_2$
- Nonlinear terms \implies self-interaction: a single wave can interact with itself and generate other waves at resonant frequencies

If
$$N = N_0$$
 or $N(t) \implies J(\Psi, \Delta \Psi) = J(\Psi, b) = 0$

- No self-interaction in time-dependent stratifications
- The linear solution is a solution of the nonlinear PDE
- To see self-interaction, we need stratifications that depend on space

Time- and space- dependent stratification

Suppose we have a time- and space-dependent stratification N = N(z, t):

$$\partial_t^2 \Delta \Psi + N^2(z,t) \partial_x^2 \Psi = 0$$

If we assume also that N(z, t) = f(t)g(z), then we can use partial Fourier transform and separation of variables to find

$$\Psi(x,z,t)=F(t)G(z)\exp(-ik_x x)$$

where

$$\begin{split} F(t) &\approx \frac{1}{\sqrt{f(t)}} \exp\left(i \int f(t) \mathrm{d}t\right) \\ G(z) &\approx \frac{1}{(g^2(z) - 1)^{1/4}} \exp\left(-i \int \sqrt{g^2(z) - 1} \mathrm{d}z\right) \end{split}$$

Oscillatory part set by $\Phi = \int f(t) dt - \int \sqrt{g^2(z) - 1} dz - k_x x$

Putting this solution into the nonlinear PDE, we see

$$\partial_t^2 \Delta \Psi + N^2(z,t) \partial_x^2 \Psi = \mathcal{G}_0(t,z) + \mathcal{G}_2(t,z) e^{2i\Phi} + \mathcal{G}_\alpha(t,z) e^{i\Phi_t - 2i\Phi_z} + c.c.
eq 0$$

where
$$\Phi=\Phi_t+\Phi_z=\int f(t)\mathrm{d}t-\int\sqrt{g^2(z)-1}\mathrm{d}z$$
, and

- $\mathcal{G}_0(t,z) \propto g'(z)$
- $\mathcal{G}_2(t,z) \propto g'(z)$
- $\mathcal{G}_{lpha}(t,z) \propto g'(z)f'(t)$

Turning off z-dependence \implies no self-interaction Turning off t-dependence \implies existing solution (Baker 2020)

Conclusion:

- Goal: Develop some theory on internal waves in time-dependent stratifications
- \bullet Linear dynamics \implies time dependence in wave's amplitude and temporal frequency
- \bullet Nonlinear dynamics \implies no self-interaction, unless stratification is also spatially dependent
- Types of nonlinear interactions: self-interaction and generation of superharmonics, multiple waves and triadic resonant instability

Perspectives & Further work:

- More detailed study of nonlinear resonances
- Analyze nonlinearities in Mathieu's case
- Analyze system from energetic point of view

Lois E. Baker and Bruce R. Sutherland.

The evolution of superharmonics excited by internal tides in non-uniform stratification. *Journal of Fluid Mechanics*.

Linear theory of the propagation of internal wave beams in an arbitrarily stratified liquid. *Journal of Applied Mechanics and Technical Physics.*

Ivana Kovacic, Richard Rand, and Si Mohammed Sah.

Mathieu's equation and its generalizations: Overview of stability charts and their features. Applied Mechanics Reviews.

Isidoro Orlanski.

Trapeze instability as a source of internal gravity waves, part 1. Journal of the Atmospheric Sciences.

Bruce R. Sutherland.

Internal Gravity Waves. Cambridge University Press.