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Abstract. For Hawkes process, long-memory point process P with intensity

λ
`
g0(t)+

P
τ<t,τ∈P h(t−τ)

´
at time t some existence and stability properties

are observed. The main result is that under suitable conditions on param-

eters we show existence of unique invariant distribution of the process; the
main difference with previous results is that Lipschitz condition of λ is not re-

quired. These methods also provide estimates on the difference at later times

of the distributions of the process starting from two different initial conditions.
Multi-type generalization is provided.
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1. Introduction

1.1. Hawkes Process. This paper studies Hawkes Processes which are particular
types of time-homogeneous self-exciting locally-finite long-memory point processes.
Its realization is a discrete random subset of R. The process is characterized by
function σ(t, ω) that is the intensity of the point process at time t conditioned on
the past history until time t. In other words the probability of k occurrences of
the point process in an infinitesimal time interval [t, t + δt] given the past history
is (σ(t,ω)δt)k

k! + o(δtk). If we denote the random set of the point process by D(ω),
then this statement can be written as

P

[
# |D(ω) ∩ [t, t+ δ]| = k|Ft

]
=

(σ(t, ω)δt)k

k!
+ o(δtk) (1)

where Ft is the σ−field generated by {D(ω) ∩ I} where I varies over intervals
I ⊂ (−∞, t]. Moreover

σ(t, ω) =
∑
τ∈Dt

h(t− τ)) (2)

where Dt := D ∩ (−∞, t) is Ft-measurable. Here λ(z) is a non-decreasing function
of z on [0,∞) and h ≥ 0 is a cadlag function of t on [0,∞) which is integrable and
normalized via

∫∞
0
h(s)ds = 1. There is a built in invariance under time translation

due to form of (2). Given the past history up to time t there is the outlook function
from R+ to R+

gt(s) =
∑
τ∈Dt

h(t+ s− τ) (3)

which evolves continuously in time and encodes all information needed for future
evolution of Hawkes process (but not necessarily all past information; for example
in case h(s) = e−s). The next occurrence time τ of the point process has the
conditional distribution

P[τ ≥ t|F0] = exp
[
−
∫ t

0

λ(gt(s))ds
]

(4)

at which points gs(·) jumps up by h(·). In section 2 semi-group for g process will
be defined and more details given.

1.2. Historical Perspective and References. Point processes were first studied
in [4] by Erlang in relevance to queueing theory and Hawkes process were first
introduced in [6] to study self-exciting point processes. For further references please
consult [2, 9]. Most of theoretical results on Hawkes process assume Lipschitz λ
and this paper can be viewed as a stronger version of [1] and generalizes results of
Bremaud and Massoulié. This paper is one of the first papers that considers non-
Lipschitz λ; for a large deviations with non-Lipschitz λ please see [13]; for other
large deviation results for Hawkes with linear λ can be found in [14, 15].

Hawkes processes are used to model many phenomena with examples ranging
from queues and population to mutations and virus spread to defaults and minimal
jumps in the markets to neuroactivity and social-networks; my personal favorite
that makes this model interesting is creative thinking i.e. modeling of new ideas.
Some of this modeling requires use of multi-dimensional Hawkes process. On the
other hand this is written for one-dimensional Hawkes process. Yet this is only for
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purposes of clarity and results can be generalized to multi-dimensional self-exciting
Hawkes process.

1.3. Example. Simplest example comes from population control theory. Consider
asexual population in certain region as a subset of time where each point in time
represents either immigrant into region or birth inside the region; suppose there is
no emigration and that immigrants are same as newborns. Further assume that
rate of emigration is α and that number of children of each member of population is
β with each child birth-date distribution being h(t+X)dt where X is the birth-date
of the parent. This corresponds to Hawkes process with λ(z) = α + β · z and h as
given. This is an example of Hawkes process where λ is linear and this also provides
relation to Galton-Watson trees which happens to be an easy way of seeing many
properties of Hawkes process.

2. Rigorous description of the process and statement of the main
results

Let us define the process and briefly explain what the main results are. Hawkes
process is a random collection D of points in R+ := [0,∞) characterized by triplet
of parameters (λ, h, g0) where λ, h, g0 : [0,∞) → [0,∞) with conditional Poisson
intensity at time t given by

λ

g0(t) +
∑

0≤s<t,s∈D

h(t− s)

 (5)

where the sum is over all previous points in Dt := D ∩ (−∞, t). The function g0

describes the initial condition and the functions λ and h describe the evolution of
the process. We will denote the distribution of D by πg := πλ,hg

It is convenient to set up the state space G of functions g0(·) on [0,∞). Start from
g0 and consider random evolution determined by semi-group Tt, i.e. gt+s = Ttgs.
Semi-group has two components: deterministic flow (Ttg)(x) = g(t+ x) for t up to
stopping time τ at which point (Tτg)(x) = g(τ + x) + h(x) with the distribution of
τ = τ(g) given by

P[τ ≥ t] = exp
[
−
∫ t

0

g(t′)dt′
]
. (6)

After τ semi-group continues as before and new clock starts. Each time stopping
time occurs there is a point in D. For any initial condition g0(·), we have a random
Markovian evolution gt(·). This induces a probability measure Pg0 on the space of
G-processes. The quantity

zt := gt(0) = g(t) +
∑
τ∈Dt

h(τ − t) (7)

will be stationary and λ(zt) will be the intensity of the point process. The distribu-
tion of outlook-function at time s starting from initial condition g will be denotes
µg,s.

Remark. In the introduction we assumed that
∫
h(t)dt = 1; this is without loss of

generality. Indeed one can always achieve this if ‖h‖1 =
∫
h(t)dt <∞ by observing

that triples (λ(z), h(t), g(t)) and (λ(z‖h‖1), h(t)
‖h‖1 ,

g(t)
‖h‖1 ) produce the same Hawkes

process with same distribution of D; on the other hand ‖h‖1 =∞ would imply that



4 DMYTRO KARABASH

gs(0) will be going to infinity a.s. and hence if we do not want process to blow up
then λ must be bounded which is not natural in our model.

In this paper we observe several facts well known for attractive systems:
1. If λ(z) ≤ A+Bz, then the process is well defined for all times. If in addition

B < 1, there is at least one stationary version.
2. If we start with g0 ≡ 0, then the distribution of gt(·) has a limit µ as t→∞

which is stationary, minimum and ergodic.
Then we present main result of this paper that strictly generalizes Bremaud-

Massoulié theorem:
3. Under certain conditions on λ and h, for a wide class of g0, the distribution

of gt(·) under Pg0 converges to the same limit as µ.
These results generalize to general multi-type self-exciting Hawkes process. This

is described in section 6

3. tools

The two main tools are coupling and addition of parent-child structure; these
two tools allow one to get the first intuitions of the process rather quick since then
process cannot be too different from the example we have given in subsection 1.3.

3.1. Coupling. The coupling can be explained in the following manner. If g1(t)
and g2(t) are two initial conditions such that g1(s) ≤ g2(s) for all s, then the two
probability measures Pg1 and Pg2 can be coupled to provide a joint process Pg1,g2
that satisfies

Pg1,g2 [g1,t(s) ≤ g2,t(s) ∀s ≥ 0] = 1 (8)

and the set of times when g1,t(·) jumps is almost surely a subset of jump times of
g2,t(·). The existence of the coupling can be proved by explicit construction. If
a(t), b(t) are two intensities and if a(t) ≤ b(t) for all t, one can construct a coupled
Poisson process, such that the two processes jump together with rate a(t) and the
second one jumps by itself at rate b(t) − a(t). In our case this is true till time
τ of first jump. After the jump the relation g1,τ (s) ≤ g2,τ (s) continues to hold.
Inductively it holds through all the jumps and gives coupling.

Hence we have stochastic domination, that is if we start with two initial condi-
tions one smaller than the other there is coupling for which this domination persists
through time.

Analogously stochastic domination is possible for pair of processes with param-
eters (λ, h, g) and (λ̃, h̃, g̃) whenever λ is non-decreasing, λ ≤ λ̃, h ≤ h̃, g ≤ g̃; note
here h̃ is not normalized.

3.2. Parent-Child Structure and Galton-Watson interpretation. Adding
the following Parent-Child Structure one would obtain a random forest structure
embedded in time which is useful due to connection to Galton-Watson trees. Start
with Hawkes process with parameters (λ, h, g0) and let D = {τ1, τ2, τ3, ...}, where τ
is an increasing sequence, i.e. i < j =⇒ τi < τj . Let us also denote λ0(z) = λ(z)−
λ(0). Now to each τi we associate a parent element p(τi) from D ∪ {−∞}, where
−∞ represents having no parent and being a root node. Let p(τi) be identically
distributed according to the following law:
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(9)

P [p(τi) = −∞] =
λ(0)
λ(zτi

)
+
λ0(zτi

)
λ(zτi

)
g(τi)
zτi

(10)

(11)

P [p(τi) = τj ] = 1j<i
λ0(zτi

)
λ(zτi

)
h(τi − τj)

zτi

Then for case λ(z) = α+ βz roots have rate α+ g(t) infinitesimal rate and each
tree has a distribution of Poisson(β)-Galton-Watson tree and that

P [τi − τj > t|p(τi) = τj ] =
∫ ∞
t

h(s)ds. (12)

This allows for different view of the model which we call parent-child interpretation
and in the case when λ is linear a Galton-Watson interpretation.

4. Results.

Proposition 1. Hawkes process is well defined whenever exist A,B ≥ 0 s.t. for
λ̄(z) = A+Bz, λ ≤ λ̄ i.e.

∀z ∈ R, λ(z) ≤ λ̄(z). (13)

Proposition 2. If we start with g0 = 0, then gt(·) ≥ 0 at time t and therefore
for any function f(x1, . . . , xk) of k variables that is non decreasing in each xi, and
any k non-overlapping intervals J1, . . . , Jk

EP0
[
f(N(t+ J1), . . . , N(t+ Jk))

]
(14)

as well as
EP0

[
f(g(t+ s1), . . . , g(t+ sk))

]
(15)

are increasing functions of t and have a limit defining a stationary point process,
that can be extended to the entire line (−∞,∞). Here Ji + t is the interval Ji
shifted by t. This process is minimal and is ergodic.

Proposition 2 provides stationary distribution; in particular stationary distribu-
tion of outlook-function. We will call this distribution µ0.

Theorem 3. If in addition we also have:

λ(z) ≤ λ̄(z) := a+ bz, b < 1 (16)

sup
x∈R+

(λ(x+ s)− λ(x)) ≤ φ(s) (17)

for some concave increasing φ satisfying∫ ∞
0

φ(H(s))ds <∞, (18)

where

H(s) =
∫ ∞
s

h(t)dt. (19)

Then starting from any initial condition g in

C :=
{
g ∈ C(R+) :

∫ ∞
0

φ(g(s))ds <∞
}

(20)
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the distribution will converge
µg,s −→

s→∞
µ0 (21)

Furthermore proof provides coupling with the process starting from 0 initial con-
dition that differs, almost surely, in only finitely many points. Hence µ0 is unique
invariant measure supported on the space C that is µ0(C) = 1.

Remark. This generalizes [1] and now does not require Lipschitz condition for λ
and gives result for Lipschitz λ as corollary. Furthermore the restrictions for φ
stated are taken to be stricter than necessary. With addition of some technicalities
one can take φ to be: ∫

λ(g(0) + x)− λ(g(0))dµ0(g). (22)

5. Proofs.

Proof of Proposition 1: Consider first Hawkes process with rate λ̄ = A + Bz; by
coupling this process is dominating and by Galton-Watson interpretation it is well
defined for all times. Hence dominated process is well defined for all times. Now
if B < 1 then dominating process is bounded in expectation (since the expected
number of points in each tree is finite); then so is dominated process and the
following standard argument gives us some invariant distribution: pick any inition
condition g0, for example g0 = 0, then invariant π is obtained as a converging
subsequence of Cesaro summations of future measures

π := lim
tk→∞

1
tk

∫ tk

0

πs,g0ds (23)

where πs,g represents distribution of the future at time s starting from initial con-
dition g0 at time 0. �

Proof of Proposition 2: We can now bound our process by Galton-Watson forest
with β < 1 for which expected size of each tree is finite and hence we have finite den-
sity which tells us that all test functions are bounded and hence for non-decreasing
f , the following limit is strictly increasing:

lim
t→∞

EP0
[
f(N(t+ J1), . . . , N(t+ Jk))

]
<∞. (24)

This gives us weak convergence. The obtained invariant π is minimum; since if we
have any other invariant π̃ then we can consider initial condition chosen randomly
corresponding to measure π̃; but then we have point-wise domination and by cou-
pling we see that π̃ dominates π. Hence π is also extremal invariant measure and
hence ergodic. �

Before we start with proof of theorem 3 let us prove the following lemma.

Lemma. For any Hawkes process with some stationary distribution µ of outlook-
function then

Eµ[g(s)] = Eµ[g(0)]H(s). (25)

Proof. By stationarity

Eµ[g(s)] = Eµ
[∫ ∞

s

g(0)h(t)dt
]

= Eµ[g(0)]
∫ ∞
s

h(t)dt = E[g(0)]H(s). (26)

�
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Proof of Theorem 3: We use recurrence argument. It is enough to show that exists
some class C′⊂C such that:

i) f ∈ C′ implies that πf and π0 have non-trivial intersection

I(πf , π0) := 1− dTV (πf , π0) > 0 (27)

ii) that process is C′-recurrent.
iii) the class µ(C) = 1
We are going to choose C′ later. First observe that by applying Jensen and

concavity of φ we obtain:

I(πf , π0) := 1− dTV (πf , π0) (28)

= E0

[
exp

(
−
∫ ∞

0

λ(zt + f(t))− λ(zt)dt
)]

(29)

≥ exp
(
−E0

[∫ ∞
0

λ(zt + f(t))− λ(zt)dt
])

(30)

≥ exp
(
−E0

[∫ ∞
0

φ(f(t))dt
])

(31)

= exp
(
−
∫ ∞

0

φ(f(t))dt
)

(32)

Which suggests us to take

C′ :=
{
g ∈ C(R+) :

∫ ∞
0

φ(g(s))ds < C

}
(33)

and to satisfy C′-recurrent condition we will choose C as follows. We know that
for any consider starting from C but with λ̄. Then applying domination, Jensen,
Lemma and concavity of φ we obtain

lim sup
t→∞

Eλg
[∫ ∞

0

φ(gt(s))ds
]
≤ lim sup

t→∞
Eλ̄g
[∫ ∞

0

φ(gt(s))ds
]

(34)

≤ lim
t→∞

Eλ̄0
[∫ ∞

0

φ(gt(s))ds
]

(35)

≤ lim
t→∞

∫ ∞
0

φ(Eλ̄0 [gt(s)])ds (36)

≤ lim
t→∞

∫ ∞
0

φ(Eλ̄0 [gt(0)]H(s))ds (37)

≤ lim
t→∞

Eλ̄0 [gt(0)]
[∫ ∞

0

φ(H(s))ds
]

(38)

where the last expression is finite since limt→∞ Eλ̄0 [gt(0)] is finite by Galton-Watson
interpretation and

∫∞
0
φ(H(s))ds < ∞ by (18) and hence setting C to be (38)

guarantees recurrence to the class and we are done. �

6. Multi-type and Other Generalizations.

This section generalizes theorem 3 to multi-type and also allows to include δ
functions into shocks h. The proofs are direct extensions of ideas presented; in this
paper for clarity and brevity purposes proofs were presented for single-type process
with h being a function rather than distribution; we will not reprove statement of
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theorem 3 for these generalization. Yet we present here the conditions for which
theorem 3 will hold. The key players then are as before λ and h but they are now
more complicated.

Consider that points now have a type from E. Hawkes process is now defined
by functional h from E to space of measures on R+ × E and functional κ : E ×
(R+ ∪ {∞}) → R+ continuous at ∞ which represent what happens to δ masses
(which in our case become Poisson variables with corresponding rate); then let
λa(z) = zκa(z). Then the doubly infinitesimal rate at time t of type a is given by

α(da) +
∫
E

λda

(∑
τi<t

hai
(dt− τi, da)

)
(39)

where ai is a type of τi.
Then µ0 still exists whenever the process does not blow up and Theorem 3 holds

whenever for some
φ(a, x) ≥ Eµ0 [λa(za + x)− λa(za)] (40)

convex in x and ∫
E

∫
R+

λa(H(da, dt)) <∞ (41)

where H is defined by

H(da, dt) =
∫
g

∫
db∈E

∫ ∞
s=t

h(ds, db, da)λ(db, ga(0))µ0(dg) (42)

The µ0 would exist whenever spectrum of the operator from E to E defined by

ν(a, db) = ‖ha(·, db)‖1 lim
z→∞

κa(z) (43)

is supported on {c ∈ C : |c| ≤ 1}.

Acknowledgments.

I would like to thank my adviser S. R. Srinivasa Varadhan for giving this topic
to me and Lingjiong Zhu. He not only gave us this rich and interesting topic, but
also provided guidance in motivation, formulation of results and clear view of the
subject. I also thank Lingjiong Zhu for helpful discussions and review of my paper.

The author is supported by NSF DMS-0904701 and DARPA grants.

References
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