Equilibrium Stat Mech
of Semi-flexible Fibers
Worm-like Chains
(e.g. polymers, DNA, actin, microtubules)

\[l_j = \| x_{j+1} - x_j \| \quad \quad \quad t_j = \frac{x_{j+1} - x_j}{l_j} \]
2. Energy due to stretching:

\[E = \frac{k}{2} \sum_{j=0}^{n-1} l_j^2 \]

Spring constant called "freely-jointed chain".

Statistical mechanics dictates the equilibrium distribution (invariant measure) at the thermodynamic equilibrium at temperature T. This is the Gibbs-Boltzmann distribution.
\[\mathcal{X} = \{ \mathbf{x}_j \} \text{ (configuration)} \]

\[P_{eq}(\mathcal{X}) = Z^{-1} \exp \left(- \frac{E(\mathcal{X})}{k_B T} \right) \]

But really GB is a **Gibbs-Boltzmann weight** and to make it into a distribution or measure we need a *reference* or *base measure* \(M_0 \) :
Today we discuss an example (not unique!) where it is difficult if not impossible to define the base measure.
Part I

Bead-Link Chain

Often to a very good approximation the links of the chain are of fixed length.

\[\| \mathbf{x}_{j+1} - \mathbf{x}_j \| = l_j = l \quad \text{(inextensibility)} \]

Inextensible freely-jointed chain

What is \(\lim_{k \to \infty} d_{\text{H} \text{eq}}(\overline{X}) \)?
Now $d\nu_\rho(Y)$ is a measure on a manifold

$$M = \big\{ \frac{1}{2} \times \frac{1}{2} \big\} \ell_j = \ell, \#j \geq 3$$

If there is only stretching energy (freely-jointed chain) then $\mu_{eq} = \mu_0$

So what is the base measure?
Two options:

\[0 \, \rho \mu_0 (\bar{x}) = \int \rho \mu (\bar{x}) \, \text{Hausdorff measure (area)} \]

\[\rho \mu_0 (\bar{x}) = \prod \delta (\varepsilon_j (\bar{x}) - \varepsilon) \]

\[\delta (q (\bar{x})) \]

where \(M = \{ \bar{x} | q (\bar{x}) = 0 \} \)

\(q \mu \) area. "Thickness" of manifold
The two are related by the co-area formula

\[\delta(q(x)) \cdot \| \nabla q(x) \| \, d\mathcal{X} = d\mu(x) \]

Turns out the correct measurable limit is

\[\int d\mu_0 = \delta(q(\mathcal{X})) \, d\mathcal{X} \]

\[q_i = e_j^2 - e_i^2 \]
If there is an additional energy U (elastic, steric, electrostatic, etc.) then

$$d\mu_{eq}(\mathbf{x}) = e^{-U/k_BT} \, d\mu_0(\mathbf{x})$$

This has become complicated. Why not just avoid constraints?
If we know tangent vectors \(t_j \) then we know \(X \) if \(X_0 = 0 \).

So why not use \(t_j \)'s instead of \(x_i \)’s?

\[
t_j = \frac{1}{2} \cos \theta_j, \sin \theta_j \quad \theta_j \in [0, \pi]
\]

and \(\theta_i \)’s are unconstrained.
At equilibrium, θ_j's are uncorrelated and uniformly distributed in $[0, 2\pi)$.

$$d\mu_0(\vec{\theta}) = \prod_{i} \frac{d\theta_i}{2\pi}$$

This is simple and physically intuitive — we could have just started here (?)
Part 2

Worm-like chain

(based in part on notes by Eric Vandenbogaert)

Let's now consider a chain that resists bending (most do, e.g., DNA).

Elastic bending energy:

\[U = U_{\text{bend}} = \frac{2K}{\ell} \sum_{i=1}^{n-1} s m^2 \left(\frac{\ell_i}{2} \right) \]

(semi-flexible fiber/worm-like chain)
\[\cos \alpha_j = t_j \cdot t_{j-1} \]

\[\alpha_j = \Theta_j - \Theta_{j-1} \]

So we can use \(\alpha_j \)'s as configuration variables

\((x_0, t_0, z) \leftrightarrow \bar{x} \)

Base measure is

\[d\mu_0(z) = \bigwedge_{i=0}^{n} \frac{dx_i}{2\pi} \]
\[d\text{Meq}(\mathbf{z}) = \prod_i \left(1 + \exp \left(-\frac{2K}{le_k} \sin^2 \left(\frac{z_i}{2} \right) \right) \right) d\mathbf{z}. \]

The \(z_i \)'s are i.i.d. (product distribution).

If chain is "stiff" \(\sin^2 \frac{z_i}{2} = \left(\frac{z_i}{2} \right)^2 \) and \(z_i \)'s are Gaussian i.i.d.

What does it mean for a chain to be stiff? (Dimensionless parameter)
\[\langle t_j \cdot t_{i+j} \rangle_{\text{Meq}} = \langle \cos \left(\sum_{k=1}^{i} \alpha_k \right) \rangle_{\text{Meq}} \]

can be done using \(\alpha \ll 1 \) approx.

\[\langle t_j \cdot t_{i+j} \rangle \approx e^{-\frac{j^2}{2S^2}} = e^{-\frac{j^2}{2S^2}} \]

\[S_j = j \ell = \text{arc length} \]

\[S = \frac{2k}{k_B T} = \text{persistence length} \]

\(\approx 50 \text{ nm for A-DNA} \)
Stiff chain means
\[l << \xi \]
In this case we can take the continuum limit \(\xi \to 0 \)

\[X \to \overline{X}(s) \in \mathbb{R}^3 \]
\(s \in [0, L] = \) arc length

Recall \(\lambda_j = \theta_j - \theta_{j-1} \)
\(\frac{dx_i}{c} \rightarrow \theta'(s_i) \)

\(t(s) = \overline{x}_s(s) = \{ \cos(\theta(s)), \sin(\theta(s)) \} \)

Is \(\theta(s) \) is (almost surely) continuous for \(vs \)?

For a stiff chain

\(\sin^2 \left(\frac{\alpha_0}{2} \right) \approx \left(\frac{\alpha_0}{2} \right)^2 \)
(18)

\[U_{\text{end}} = \frac{k}{2 \ell} \sum_{j=1}^{n-1} \alpha_j^2 \]

\[\xrightarrow{\ell \to 0} \quad \frac{k}{2} \int_0^L (\varphi'(s))^2 \, ds \]

\[s=0 \quad \Rightarrow \quad = \frac{k}{2} \int_0^s \| x''(s) \|^2 \, ds \]

\[U \left[x(x) \right] = \frac{k}{2} \int_0^L \| x''(s) \|^2 \, ds \quad (2D/3D) \]

(\text{inverse curvature})
Part 3

Continuum Brownian chains

What is the continuum limit of $\text{Meq}(X)$ for a worm-like chain?

Physicists often (naively!) write

$$\text{Meq}[X(t)] \sim \exp\left(-\frac{u[X(t)]}{k_B T}\right) dX$$

"nonsense" notation (formal)
20) But Lebesgue measure cannot be generalized to infinite dimensions (theorem), so DX is just formal notation with no clear meaning. Functional distributions don't usually make sense, except when they are Gaussian (we are in luck!)
Let's work with $\Theta(s)$ since $X(s)$ is constrained by $\|X_s\| = 1$ (mextensibility).

What does

$$P_{eq}[\Theta(.)] \sim \exp \left[-\frac{L}{4} \int_0^\infty (\theta'(s))^2 ds \right]$$

persistence length mean precisely?
Derivation #1

discrete \rightarrow continuum

(more physical for modeling)

Recall x_j's are i.i.d.

Gaussian random variables

with mean μ and variance $\frac{3}{4\ell}$.

\[
d\mu_{eq}(x_j) = 2^{-1} \exp\left(-\frac{3}{4\ell} x_j^2\right) dx_j
\]

\[
d\mu_{eq}(z^2) = \prod_j d\mu_{eq}(x_j)
\]
\[\Theta_{i+1} = \Theta_i + \sqrt{\frac{2 \varepsilon}{3}} \sqrt{N(0, 1)} \]

\[\Theta(s + ds) = \Theta(s) + \sqrt{\frac{2d_s}{3}} \sqrt{N(0, 1)} \]

\[
\frac{1}{3} \Theta(s) = \sqrt{\frac{2}{3}} \int \frac{dB(s)}{\sqrt{s}} \quad (SDE) \]

Brownian motion

(periodic)

\[\Theta(s) = \Theta_0 + B \left(\frac{2s}{3} \right) \]

is Brownian motion on \([0, 2\pi]) \]
This works in 3D also:

The tangent vector $\mathbf{t}(s)$ performs Brownian motion on the unit circle (2D) / sphere (3D) with diffusion coefficient ξ^{-1}.

This has a clear and precise mathematical meaning.
But observe that $s \to 0$
(freely-jointed chain) limit
does not make sense
(almost) nowhere differentiable
therefore we cannot write
\[\delta \mu_p = e^{-U}/h \]

makes sense

(m continuum \(\ell \ll s \))
Derivation #2

(continuum from the start, math not modeling)

For simplicity, take a ring polymer, \(k_b T = 1 \), \(S = 2 \), so \(\alpha \) (see \(E_0, 2\pi \)) is periodic

Let \(Z \Theta = -\Theta \)

Hermitian SPD operator
\[U [\theta (\cdot)] = \frac{1}{2} \int_0^{2\pi} (\theta'(s))^2 \, ds \]

\[= -\frac{1}{2} \int_0^{2\pi} \theta(s) \theta''(s) \, ds \]

\[= \frac{1}{2} \left(\Theta, \Delta \Theta \right)_{L^2 : [0, 2\pi]} \]

Go to Fourier space

\[\Theta(s) \rightarrow \{ \hat{\Theta}_k \} \]
\[U(\hat{\theta}) = \sum_{k=-\infty}^{\infty} \frac{k^2 \hat{\theta}_k^2}{2} \quad \text{(Parseval's theorem)} \]

\[d\mu_{eq}(\hat{\theta}) = e^{-U(\hat{\theta})} d\hat{\theta} \]

\[= \prod_k e^{-\frac{k^2 \hat{\theta}_k^2}{2}} d\hat{\theta}_k \]

which makes sense even though infinite-dimensional product distribution
\[\hat{\Theta}_k \overset{d}{=} \mathcal{N}(0, k^{-2}) \]

which is the spectrum of periodic Brownian motion!

So we get \(\Theta(s) \equiv \text{Brownian motion (periodic)} \)

Note: \(\frac{d \hat{\Theta}}{ds} = \mathcal{W} \) (white noise)

\[\hat{W}_k \overset{d}{=} \mathcal{N}(0, 1) \Rightarrow \hat{\beta}_k \overset{d}{=} \mathcal{N}(0, k^{-2}) \]

(complex)
The advantage of the "math" derivation is that it is obvious how to generalize to any quadratic energy:

$$U[\theta] = \frac{1}{2} \langle \theta, \theta \rangle$$

$$\Theta(s) = \sum c_j \Psi_j(s)$$

random coefficients

eigenfunctions of \mathbf{K}
3) \[x_i \Psi_i = \lambda_i \Psi_i, \quad \lambda_i > 0 \]

\[(\Psi_i, \Psi_j) = \delta_{ij} \]

\[\Rightarrow (0, x^0) = \sum \lambda_i c_i^2 \Rightarrow \]

\[\text{d}M_{eq} (\vec{c}) = \prod_j \exp \left(-\frac{\lambda_j c_j^2}{2k_B T} \right) \text{d}c_j \]

Gaussian functional distributions can be made sense of.
But we still don't know how to add dynamics (non-equilibrium stat mech).

Is there a continuum limit of Brownian dynamics, i.e. functional overdamped (multiplicative noise) Langevin eqs?