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Abstract
We proved that a finite commuting Boyd-Wong type contractive fam-

ily with equicontinuous words have the approximate common fixed point
property. We also proved that given X Ă Rn, compact and convex subset,
F : X Ñ X a compact-and-convex valued Lipschitz correspondence and
g an isometry on X, then gF “ F g implies F admits a Lipschitz selection
commuting with g.

1 Introduction
This is a summary of what we did in the Summer Undergraduate Research Ex-
perience in Courant Institute in 2017. We prove two new results in this report.
The formulation of the theorems come from a long line of thoughts. We first
present them in natural order.
The famous Banach fixed point theorem was proved in 1922. Since then numer-
ous generalizations of it have been made. David Boyd and James Wong proved
a particularly elegant one in 1969. The theorem states that Given a complete
metric space pX, dq and an upper semicontinuous mapping φ on r0,8q with
0 ď φptq ă t for every t ą 0, if f is a self-map on X satisfying

dpfpxq, fpyqq ď φpdpx, yqq for every x, y P X

then f has a unique fixed point x P X.
It examplifies a trend in metric fixed point theory where people try to replace

the λ ă 1 Lipschitz condition in Banach’s theorem by some weaker conditions
and still have a unique fixed point result. In 2001, the following theorem by
Stein and Merryfield provides a new perspective on the way of discovering new
theorems [1]:

Theorem 1 (Generalized Banach Contraction Theorem (GBCT)). For a com-
plete metric space pX, dq and a self map T on X, if Dm P N, γ P p0, 1q such that
@x, y P X, we have

mintdpT kpxq, T kpyqq : 1 ď k ď mu ď γdpx, yq,

then T has a unique fixed point.
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The proof is combinatorial and relies on Ramsey theorem. It no longer re-
quires the operators to be continuous and the conditions become a restriction
on a family of operators. Further, in 2002 Stein conjectured in [2] that: Given
pX, dq a complete metric space and F “ tT1, ..., Tnu a finite family of self maps
on X. If Dγ P p0, 1q such that @x, y P X, DF P F with dpF pxq, F pyqq ď γdpx, yq,
then some composition of members of F has a fixed point.

This conjecture in general is disproved by a counterexample in the case
n “ 2 given by Austin in [3] in 2005, however he proved that if members F
are continuous, commuting pairwisely and |F | “ 2, then they have a com-
mon fixed point. Austin also proved that if the members of F are uniformly
continuous, commuting pairwisedly and X is bounded, then they have a com-
mon fixed point. In 2008, Reich and Zaslavski merged the Boyd-Wong the-
orem with the uniformly continuous version of GBCT and proved that for
F “ tT, T 2, ..., TNu with T uniformly continuous on an orbit T ix0 for some
x0 P X, given the φ in Boyd-Wong’s theorem, if for any x, y P X, we have
mintdpT ix, T iyq : i P t1, ..., N0uu ď φpdpx, yqq, then T has a unique fixed point
[4]. Finally, following Austin’s method, we aim to generalize Reich and Za-
slavski’s result to F “ tT1, ..., TNu with T1, ..., TN commuting and the words
of them equicontinuous on the orbit of some x0 P X. The optimal fixed point
result is still open, but we are able to show such family exists ε-approximate
fixed point for any small ε ą 0 no matter X is complete or not. This is our first
result and we prove it in the next section.

Our second result comes from the set-valued metric fixed point theory. In
1969, Nadler proved that a contractive compact-valued self-correspondence on
a complete metric space always has a fixed point. A natural question in our
context is whether we can generalize it in the same way as above, i.e. from a
single correspondence to a family of them. This question remains open, but it
may help us by considering the selection of the correspondence. Therefore we
would like to consider for Γ : X Ñ X compact-and-convex valued, f : X Ñ X
both Lispchitz and commuting, whether Γ admits a Lipschitz selection that
commutes with f . It seems unlikely for the infinite dimensional case since in [5]
it is proved that Γ may not have a Lipschitz selection there. So we restrict X
to be a compact and convex subset of Rn since by the Steiner’s point map we
know in this case the Lipschitz selection of Γ always exists. Our second result
shows that if f is an isometry, then Γ will have a selection g that commutes
with f . Further, we know lippgq ď n lippΓq. We prove it in section 3. The proof
is essentially an application of Schauder’s fixed point theorem on the space of
Lipschitz selections.

2 Approximate Common Fixed Point Theorem
Let pX, dq be any metric space, F :“ tT1, ..., Tnu any finite family of pairwisely
commuting continuous self-maps on X. Let φ be an upper semicontinuous
mapping φ on r0,8q with 0 ď φptq ă t for every t ą 0. For any ε ą 0, we say
x P X is an ε-approximate fixed point if dpx, Tixq ă ε for i “ 1, .., n. In this
section, we prove the following theorem:
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Theorem 2. If @x, y P X, we have mintdpTix, Tiyq : i “ 1, ..., nu ď φpdpx, yqq
and the set of finite compositions of T1, ..., Tn is equicontinuous. Then F has
an ε-approximate common fixed point for every ε ą 0.

Proof. Fix any ε ą 0, by equicontinuity, we can find a δ ą 0 such that dpUx,Uyq ă
ε for all U a word generated by elements of F whenever dpx, yq ă δ. Now fix
this δ too and let us do an induction on k ď n.

The base case k “ 1 is to find an x P X such that dpx, T1xq ă ε. To show
this, we define a sequence of points inductively. Start with an arbitrary point
a0 P X. Notice for simplicity in this proof we always assume the ak’s are not
fixed point of any member of Tj , j “ 1, ..., n. This is because it is easy to show by
commutativity that a fixed point of one operator implies a common fixed point
of the whole family. Now suppose we have already chosen up to am, we define
am`1 as Tipmqam where ipmq :“ mintj P t1, ..., nu : Tj contract dpam, T1amqu.
In this way we have

dpam`1, T1am`1q “ dpTipmqam, T1Tipmqamq “ dpTipmqam, TipmqT1amq

ď φpdpam, T1amqq ă dpam, T1amq.

Therefore the sequence pdpam, T1qq
8
m“1 is decreasing and bounded below by 0,

hence must converge to some number ξ. Suppose ξ ą 0, since ... ă dpam`2, T1am`2q ă
dpam`1, T1am`1q ď φpdpam, T1amqq, taking the limit of left hand side, we have
ξ ď φpdpam, T1amqq. Taking limit of right hand side and use the upper semi-
continuity of φ, we have ξ ď φpξq, contradiction. Therefore dpam, Tamq Ñ 0.
So in this sequence we can find an x P X such that dpx, T1xq ă mintε, δu.

Now build from this x a sequence inductively as follows. Let y0 “ x, suppose
we have defined up to ym, let ym`1 “ Tjpmqym where j is the smallest index of
F such that Tj contracts ym and T2ym, that is, we just build from x a sequence
like above but replace T1 with T2. Running the same argument again we know
dpT2ym, ymq Ñ 0 as m Ñ 8. Therefore we can pick a y in this sequence such
that dpy, T2q ă mintδ, εu. Notice y “ U2x for some finite word U2 constructed
as above, hence we also have

dpT1y, yq “ dpT1U2x, U2xq “ dpU2T1x, U2xq ă ε,

since we made dpT1x, xq ă δ. Therefore y is an ε-approximate common fixed
point of tT1, T2u.

Proceeding just like above for each Tk, k “ 3, ..., n, start from a point αk´1
which satisfies dpαk´1, Tαk´1q ă mintε, δu, construct a sequence by prefixing
an operator that contract it and its image under Tk, in this sequence we can find
our αk with dpαk, Tαkq ă mintε, δu. This αk will be an ε-approximate common
fixed point of tT1, ..., Tku. Continuing until k “ n, we are done.

2.1 Discussion
As we mentioned in the introduction, it is proved in [4] that if X is complete,
T is uniform continuous and F is of the form tT, T 2, ..., TNu for some N , then
T has a unique fixed point. If we can strengthen our result above to a fixed
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point result by requiring the metric space to be complete, we can generalize
their result.

Reason. Since T is uniformly continuous, so does T 2, ..., TN . Therefore, for any
ε ą 0, we can choose δ ą 0 such that dpT ix, T iyq ă ε, i “ 1, ..., N whenever
dpx, yq ă δ. To show the equicontinuity of their F , i.e the finite words generated
by the elements in their F , we just need to show under the same condition we
have dpT jx, T jyq ă ε for all other j P N. This is true since for dpT ix, T iyq ă ε,
i “ 1, ..., N , there is at least one of them that contracts x and y, that is,
Da P t1, ..., Nu such that dpT ax, T ayq ă δ. Therefore we have

dpTx, Tyq ă ε, dpT 2x, T 2yq ă ε, ..., dpT ax, T ayq ă mintε, δu,
dpT a`1x, T a`1yq ă ε, ..., dpT a`Nx, T a`Nyq ă ε.

Repeating this procedure, we can prove dpT jx, T jyq ă ε for any j P N.

However, it is still unclear for us how to prove that having all ε-approximate
common fixed point implies a common fixed point in our case even with an extra
condition of completeness. In [3] it is proved that if φpxq “ γx for some γ ă 1,
then approximate common fixed points implies fixed points. That is because
for those φ’s, pick xi to be the 2´i-approximate fixed point, then the triangular
inequality gives a nice dpxn, xmq ď dpxn, Txnq ` dpTxn, Txmq ` dpTxm, xmq ď
2´n` 2´m` γdpxn, xmq, which implies pxiq is Cauchy hence converges to some
point. However, when γ is replaced by our more general φ function, it may
not be invertible and φpxq can be much closer to x than γx is. Ideally if we
know φ is invertible and increasing, then we still will have a fixed point, but
this restriction is quite strong. To really push this line of thought about these
forced conditions we can have the following result. Let F “ tS, T u family of
commuting continuous operators on complete X.

Theorem 3. Suppose

1. @x, y P X, DF P F with dpF pxq, F pyqq ď φpdpx, yqq and D a small q ą 0
such that pid´ φqχttăqu is increasing.

2. Dx P X such that both S and T are uniformly continuous on the set
tSiT jx : i, j P Nu, and

3. DM P N such that @x P X, Dppxq P N, 0 ă ppxq ăM such that dpST p´1x, T p`1xq ď

ψpdpTx, xqq for some ψ P RR`

` strictly increasing,

then S and T have a unique common fixed point.

Proof. As we noted before with condition 1, the approximate common fixed
points can imply a common fixed point– just notice dpxn, xmq ď pid´φq´1p2´n`
2´mq Ñ 0 as m,n Ñ 8. Therefore we just need to find the approximate com-
mon fixed points.

Starting from the x P X in the assumption, we construct the sequence as
before. In that way we have dpxn, Txnq ď φpdpxn´1, Txn´1qq a decreasing se-
quence with a lower bound. If dpxn, Txnq Ñ ε1 ą 0, then @N P N, DnpNq ą N
such that dpxnpNq, TxnpNqq ą ε1. Therefore ε1 ă dpxnpNq, TxnpNqq ď φpdpxnpNq´1, TxnpNq´1qq,
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letting nÑ8, we have φpε1q ą ε1 a contradiction. So dpxn, Txnq Ñ 0. Now fix
a small η ą 0, let the sequence start from dpx1, Tx1q ă η.

To show dpSyi, yiq Ñ 0 too, notice dpyi, Syiq “ dpSTxni´1, Txni´1q ď
dpSTxni´1, Sxni´1q ` dpSxni´1, Txni´1q. Given any ε ą 0 by uniform continu-
ity, there exists an η1 ą 0, such that if dpTxni´1, xni´1q ă η1, then dpSTxni´1, Sxni´1q ă
ε, by construction, we can always find a large ni such that dpTxni´1, xni´1q ă η1,
so the dpSTxni´1, Sxni´1q part is done.

We just need to show dpSxni´1, Txni´1q will also go to zero. Now we have
two cases, the first case is that we can always find infinitely many consecutive
yi and yi`1 such that |ni´ni`1| ąM ; the second case is that we cannot do so.

In the first case, pass to the subsequence of such yi’s, we have xni´1 “
T ppxni´1q´1xni´ppxni´1q since p ăM by assumption, so

dpSxni´1, Txni´1q

“dpST ppxni´1q´1xni´ppxni´1q, TT
ppxni´1q´1xni´ppxni´1qq

ďdpST ppxni´1q´1xni´ppxni´1q, T
ppxni´1q`1xni´ppxni´1qq ` dpT

ppxni´1q`1xni´ppxni´1q, T
ppxni´1qxni´ppxni´1qq

ďψpdpTxni´1, xni´1qq ` dpTxni
, xni

q

Therefore, for @ε ą 0, we can always find an ni large enough such that dpTxni´1, xni´1q ă
ψ´1p ε2 q and dpTxni , xniq ă

ε
2 and we are done.

The second case is similar to Austin’s proof in [3]: in this case, we can trun-
cate the sequence xn from a very large n such that after the truncation every yi
and yi`1 are separated at most Mη for all i. Then we are still interested in the
yi’s. Notice dpyi, Syiq ď dpyi, yi`1q ` dpyi`1, Syiq ă Mη ` dpyi`1, yiq. For any
pair yi and yi`1, let Li :“ dpyi, yi`1q, then further we have two cases: either T
contracts Li for some i or not.

If T contracts Li for some i, we have

Li “ dpyi, yi`1q ď dpyi, Tyiq ` dpTyi, T yi`1q ` dpTyi`1, yi`1q

ă η ` φpLiq ` η

Therefore, pid ´ φqpLkq ă 2η. When ε is small enough ε ă q, we can let
2η ă pid´ φqpεq and have Lk ă ε and we are done for this part.

If T does not contract Li for any i, then S does, so fix any i

Li`1 ď dpyi`1, yi`2q ď dpSpyiq, yi`1q ` dpSpyiq, Spyi`1qq ` dpSpyi`1q, yi`2q

ďMη ` φpLiq `Mη

Therefore if pid´φqpLiq ą 3Mη, then Li`1`Mη ď 3Mη`φpLiq “ Li`3Mη`
φpLiq´Li ă Li. If still pid´φqpLi`1q ą 3Mη, we will have Li`2`Mη ă Li`1.
This decreasing sequence will terminate some time since the difference Mη is
fixed, which means that pid´φqpLiq ď 3Mη someday. When ε is small enough,
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we can let 3Mη ď pid ´ φqpεq and this gives us Li ď ε and we are finally
done.

Although in this theorem we can get rid of the equicontinuity condition of
an infinite family and have fixed point result, the conditions imposed are really
forced. We just remark that there are also other ways to produce similar results,
namely changing the ψ in third condition to act differently on the orbit.

3 Set-Valued Result
Recall that a correspondence F is a multivalued function and a function f is
called a selection of F if f P F pointwisely. In a metric space, we define the con-
tinuity and Lipschitzness of a correspondence using the Hausdorff metric, that
is, dHpA,Bq :“ maxtsupxPX infyPY dpx, yq, supyPY infxPX dpx, yqu. We ask the
question whether a pair of commuting Lipschitz correspondence and Lipschitz
function would lead to a pair of commuting Lipschitz selection and Lipschitz
function. The partial answer that we have now is given in the theorem below.

Theorem 4. Given X Ă Rn a compact and convex subset, if F : X Ñ X a Lip-
schitz compact-and-convex-valued correspondence commutes with g P CpX,Xq
an isometry, then F admits a Lipschitz selection f such that fg “ gf . Further,
we have lippfq ď nlippF q.

Proof. The proof relies on an application of Schauder’s fixed point theorem: ev-
ery continuous self-map on a nonempty compact and convex subset of a normed
linear space has a fixed point [6] .

First we refer to the classical theorem about Lipschitz selection [7]: A Lips-
chitz set-valued map F from a metric space to nonempty closed convex subsets
of Rn has a Lipschitz selection f . The selection is constructed using the Steiner
point snpKq of a compact set K Ă Rn

snpKq “
1

V olpBnq

ż

Bn

mpBσpK, pqqdp

where BσpK, pq :“ tx P K| ă p, x ą“ σpK, pqu and σ is the support function.
It can be shown that snpKq P K and ||snpKq ´ snpLq|| ď ndHpK,Lq.

This theorem tells us that the set F :“ tf is a Lipschitz selection of F, lippfq ď
n lippF qu is a nonempty subset of CpX,Xq Ă CpX,Rnq. Equip F with the sup
norm from CpX,Rnq, F is convex since F is convex, so the convex linear com-
binations of selections are still selections and since lip : CpX,Xq Ñ R` is
homogeneous, we still have ligpfq ď n lippF q. We are going to show that F is
compact by first showing it is complete and then use Arzelà-Ascoli. Then we
are going to define an operator on F with a fixed point, which is the selection
that commutes with g.

F is complete: Consider pfiq P F8 Cauchy, for each x P X, pfipxqq is a
Cauchy sequence, since X is complete, we can define fpxq :“ fipxq. Now we
need to show (1) fpxq P F pxq, (2)the convergence fi Ñ f is uniform and (3) f
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is Lipschitz with lippfq ď n lippF q.

(1) is true since F is closed valued, fipxq P F pxq, fipxq Ñ fpxq implies
that fpxq P F pxq. (2) is true since @ε ą 0, DN P N such that |fnpxq ´
fmpxq| ď ||fn ´ fm|| ă ε,@m,n ą N,@x P X. Sending m Ñ 8, we have
@x P X, |fnpxq ´ fpxq| ă ε. Also for xn Ñ x we have |fpxnq ´ fpxq| ď
|fpxnq ´ fipxnq| ` |fipxnq ´ fipxq| ` |fipxq ´ fpxq| Ñ 0 ñ f is continuous
ñ ||f || makes sense. Therefore ||fn ´ f || Ñ 0.

(3) is true since @x, y P X, |fipxq´fipyq| ď n lippF q|x´y| for all i P N. since
|fipxq´fipyq´fpxq`fpyq| Ñ 0 as iÑ8, we have |fpxq´fpyq| ď n lippF q|x´y|.

Now to show F is compact, we only need to show it is totally bounded.
By Arzelà-Ascoli, we need to show F is pointwise bounded and equicontinuous:
@x P X, tfpxq : f P Fu Ă F pxq is bounded, so F is pointwise bounded. It is
equicontinuous since given any ε, the δ can be taken as ε{pn lippF qq.

Now we know F is compact, we define an operator cg : F Ñ F by cgpfq :“
g´1 ˝ f ˝ g. To show cg is well-defined, we need to show cgpfq P F , that
is (1) cgpfqpxq P F pxq for all x P X and (2) cgpfq is still Lipschitz with
lippcgpfqq ď n lippF q.

(1) is true since cgpfqpxq P g´1 ˝ F ˝ gpxq “ g´1 ˝ g ˝ F pxq “ F pxq,@x P X
since gF “ Fg.

(2) is true since

|cgpfqpxq ´ cgpfqpyq| ď lippg´1q|fgpxq ´ fgpyq|

ď lippg´1qlippfq|gpyq ´ gpyq|

ď lippg´1qlippfqlippgq|x´ y|

“ lippfq|x´ y|,

therefore lippcgpfqq “ lippfq.

Finally to use Schauder’s fixed point theorem, we only need to show cg is
continuous. So consider a sequence fi in F that converges to f in the sup norm.
@ε ą 0, DNpεq P N such that @n ą N,@x P X, |figpxq ´ fgpxq| ă ε. Since X
is compact, we know g´1 is uniformly continuous, i.e, @ε ą 0, Dδpεq such that
@|x1 ´ x2| ă δpεq, |g´1px1q ´ g

´1px2q| ă ε. Now fix any ε ą 0, just take Npδpεqq
and we are done.

cg has a fixed point tells us that there is a selection f of F with lippfq ď
n lippF q such that cgpfq “ f , which means that fg “ gf .

Remark
An easy generalization is that we can relax the assumption for g to let it be
bi-Lipschitz and lippgqlippg´1q ď 1 since we only used these conditions in the
proof.
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3.1 Discussion
As we can tell, the result above is still quite naïve and far from ideal. We
can see there are at least two steps from here to an ideal result. The first
one is about g being isometry, if we can relax this requirement such that g is
just Lipschitz, we can arrive at some interesting result in its own right, that
is, if a Lipschitz function commutes with a Lipschitz correspondence, then the
Lipschitz correspondence admits a Lipschitz selection that commutes with that
function. We can not do this relaxation in our proof above since if g is not
invertible then the pivotal cg will be ill-defined. Even if we only require g to be
bi-Lipschitz, cgpfq may still be outside F since lippgqlippg´1q may be large. The
second step is to relax the requirement about Lipschitzness of both operators
to mimic the situation in the first part, that is, given any pair of points, either
the correspondence F or the function g will contract them. If the F still admits
a selection f satisfying this property and commuting with g, then from [3] we
know f and g have a common fixed point, hence F and g has a common fixed
point.
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