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Abstract

We proved that a finite commuting Boyd-Wong type contractive fam-
ily with equicontinuous words have the approximate common fixed point
property. We also proved that given X < R", compact and convex subset,
F : X 3 X a compact-and-convex valued Lipschitz correspondence and
g an isometry on X, then gF' = F'g implies F' admits a Lipschitz selection
commuting with g.

1 Introduction

This is a summary of what we did in the Summer Undergraduate Research Ex-
perience in Courant Institute in 2017. We prove two new results in this report.
The formulation of the theorems come from a long line of thoughts. We first
present them in natural order.

The famous Banach fixed point theorem was proved in 1922. Since then numer-
ous generalizations of it have been made. David Boyd and James Wong proved
a particularly elegant one in 1969. The theorem states that Given a complete
metric space (X,d) and an upper semicontinuous mapping ¢ on [0,00) with
0 < ¢(t) <t for every t > 0, if f is a self-map on X satisfying

d(f(z), f(y)) < ¢(d(w,y)) for every z,y € X

then f has a unique fixed point x € X.

It examplifies a trend in metric fixed point theory where people try to replace
the A < 1 Lipschitz condition in Banach’s theorem by some weaker conditions
and still have a unique fixed point result. In 2001, the following theorem by
Stein and Merryfield provides a new perspective on the way of discovering new
theorems [I]:

Theorem 1 (Generalized Banach Contraction Theorem (GBCT)). For a com-
plete metric space (X, d) and a self map T on X, if Im € N,y € (0,1) such that
Vr,y e X, we have

min{d(T*(z), T"(y)) : 1 < k < m} < vd(z,y),

then T has a unique fixed point.



The proof is combinatorial and relies on Ramsey theorem. It no longer re-
quires the operators to be continuous and the conditions become a restriction
on a family of operators. Further, in 2002 Stein conjectured in [2] that: Given
(X, d) a complete metric space and F = {T1,...,T,,} a finite family of self maps
on X. If 3y € (0,1) such that Va,y € X, 3F € F with d(F(x), F(y)) < vd(z,y),
then some composition of members of F has a fixed point.

This conjecture in general is disproved by a counterexample in the case
n = 2 given by Austin in [3] in 2005, however he proved that if members F
are continuous, commuting pairwisely and |F| = 2, then they have a com-
mon fixed point. Austin also proved that if the members of F are uniformly
continuous, commuting pairwisedly and X is bounded, then they have a com-
mon fixed point. In 2008, Reich and Zaslavski merged the Boyd-Wong the-
orem with the uniformly continuous version of GBCT and proved that for
F = {T,T?, ...,TN} with T uniformly continuous on an orbit 7%z, for some
zo € X, given the ¢ in Boyd-Wong’s theorem, if for any =,y € X, we have
min{d(T%z, T%) : i € {1,..., No}} < ¢(d(w,y)), then T has a unique fixed point
[4]. Finally, following Austin’s method, we aim to generalize Reich and Za-
slavski’s result to F = {T1,...,Tn} with T1,...,Tx commuting and the words
of them equicontinuous on the orbit of some xy € X. The optimal fixed point
result is still open, but we are able to show such family exists e-approximate
fixed point for any small € > 0 no matter X is complete or not. This is our first
result and we prove it in the next section.

Our second result comes from the set-valued metric fixed point theory. In
1969, Nadler proved that a contractive compact-valued self-correspondence on
a complete metric space always has a fixed point. A natural question in our
context is whether we can generalize it in the same way as above, i.e. from a
single correspondence to a family of them. This question remains open, but it
may help us by considering the selection of the correspondence. Therefore we
would like to consider for I' : X =3 X compact-and-convex valued, f: X — X
both Lispchitz and commuting, whether I' admits a Lipschitz selection that
commutes with f. It seems unlikely for the infinite dimensional case since in [5]
it is proved that I' may not have a Lipschitz selection there. So we restrict X
to be a compact and convex subset of R™ since by the Steiner’s point map we
know in this case the Lipschitz selection of I' always exists. Our second result
shows that if f is an isometry, then I' will have a selection g that commutes
with f. Further, we know lip(g) < nlip(I'). We prove it in section 3. The proof
is essentially an application of Schauder’s fixed point theorem on the space of
Lipschitz selections.

2 Approximate Common Fixed Point Theorem

Let (X, d) be any metric space, F := {T1, ..., T} any finite family of pairwisely
commuting continuous self-maps on X. Let ¢ be an upper semicontinuous
mapping ¢ on [0,00) with 0 < ¢(t) < t for every ¢t > 0. For any € > 0, we say
x € X is an e-approximate fixed point if d(z,T;z) < € for i = 1,..,n. In this
section, we prove the following theorem:



Theorem 2. If Va,y € X, we have min{d(T;z,T;y) : i = 1,...,n} < ¢(d(z,y))
and the set of finite compositions of Ty, ..., Ty, is equicontinuous. Then F has
an e-approrimate common fixed point for every € > 0.

Proof. Fix any ¢ > 0, by equicontinuity, we can find a 0 > 0 such that d(Uz, Uy) <
e for all U a word generated by elements of F whenever d(z,y) < 6. Now fix
this § too and let us do an induction on k < n.

The base case k = 1 is to find an z € X such that d(z,Tix) < e. To show
this, we define a sequence of points inductively. Start with an arbitrary point
ag € X. Notice for simplicity in this proof we always assume the aj’s are not
fixed point of any member of T}, j = 1, ...,n. This is because it is easy to show by
commutativity that a fixed point of one operator implies a common fixed point
of the whole family. Now suppose we have already chosen up to a,,, we define
am1 a8 Ti(m)@nm where i(m) := min{j € {1,...,n} : T; contract d(am,T1am)}.
In this way we have

d(amy1, Tram1) = ATy am, Ti Timyam) = d(Tim) @ms Tigm) T10m)

—d
< ¢(d(am, Tham)) < d(am, Tiam).

Therefore the sequence (d(am,T1))m_; is decreasing and bounded below by 0,
hence must converge to some number £. Suppose £ > 0, since ... < d(am42, T1@m12) <
d(am+1, Thams1) < ¢(d(am, Tiam)), taking the limit of left hand side, we have

¢ < ¢(d(am, Thary)). Taking limit of right hand side and use the upper semi-
continuity of ¢, we have £ < ¢(€), contradiction. Therefore d(a,,Ta,,) — 0.

So in this sequence we can find an z € X such that d(z,Tiz) < min{e, §}.

Now build from this = a sequence inductively as follows. Let yg = x, suppose
we have defined up to ym, let ymi1 = Tj(m)yYm where j is the smallest index of
F such that Tj contracts y,, and Toy,,, that is, we just build from x a sequence
like above but replace 77 with T5. Running the same argument again we know
d(T2Ym,Ym) — 0 as m — 0. Therefore we can pick a y in this sequence such
that d(y,T») < min{d, e}. Notice y = Uz for some finite word U, constructed
as above, hence we also have

d(Tl%y) = d(T1U2x7 ng) = d<U2T1$7 UQ:E) <€,

since we made d(Tix,z) < 0. Therefore y is an e-approximate common fixed
point of {T},Ts}.

Proceeding just like above for each Ty, k = 3, ..., n, start from a point ag_1
which satisfies d(ag—1,Tar—1) < min{e, 0}, construct a sequence by prefixing
an operator that contract it and its image under T}, in this sequence we can find
our oy, with d(ag, Tay) < min{e, d}. This ay will be an e-approximate common
fixed point of {T71, ..., T} }. Continuing until k¥ = n, we are done. O

2.1 Discussion

As we mentioned in the introduction, it is proved in [4] that if X is complete,
T is uniform continuous and F is of the form {7, 72, ..., TV} for some N, then
T has a unique fixed point. If we can strengthen our result above to a fixed



point result by requiring the metric space to be complete, we can generalize
their result.

Reason. Since T is uniformly continuous, so does T2, ..., TN . Therefore, for any
€ > 0, we can choose § > 0 such that d(T'x,T'y) < €,i = 1,..., N whenever
d(z,y) < §. To show the equicontinuity of their F, i.e the finite words generated
by the elements in their F, we just need to show under the same condition we
have d(T7x,T7y) < ¢ for all other j € N. This is true since for d(T 'z, T'y) < e,
i = 1,...,N, there is at least one of them that contracts z and y, that is,
Ja € {1,..., N} such that d(T*xz, T*y) < 6. Therefore we have

d(Tz,Ty) < €,d(T?z, T?y) < e, ...,d(T%, T%) < min{e, 0},
AT, T y) < €, .., d(T N, T Ny) < e

Repeating this procedure, we can prove d(T7x, T7y) < € for any j € N. O

However, it is still unclear for us how to prove that having all e-approximate
common fixed point implies a common fixed point in our case even with an extra
condition of completeness. In [3] it is proved that if ¢(z) = vz for some v < 1,
then approximate common fixed points implies fixed points. That is because
for those ¢’s, pick x; to be the 2 %-approximate fixed point, then the triangular
inequality gives a nice d(xy, Ty ) < d(p, Ty) + ATz, Tam) + d(TTp, T) <
27" 4+ 27" 4+ yd(xy, T, ), which implies (z;) is Cauchy hence converges to some
point. However, when v is replaced by our more general ¢ function, it may
not be invertible and ¢(x) can be much closer to x than vz is. Ideally if we
know ¢ is invertible and increasing, then we still will have a fixed point, but
this restriction is quite strong. To really push this line of thought about these
forced conditions we can have the following result. Let F = {S,T} family of
commuting continuous operators on complete X.

Theorem 3. Suppose

1. Va,y e X, 3F € F with d(F(x),F(y)) < ¢(d(z,y)) and 3 a small ¢ > 0
such that (id — ¢)X{i<q} 5 increasing.

2. dx € X such that both S and T are uniformly continuous on the set
{S'TVx :i,j € N}, and

3. 3M € N such thatVx € X, Ip(x) € N,0 < p(x) < M such that d(STP 1z, TPT1x) <
Y(d(Tz,x)) for some ) € RE* strictly increasing,

then S and T have a unique common fixed point.

Proof. As we noted before with condition 1, the approximate common fixed
points can imply a common fixed point— just notice d(z,,, xm,) < (id—¢) "1 (27" +
27™) — 0 as m,n — o0. Therefore we just need to find the approximate com-
mon fixed points.

Starting from the z € X in the assumption, we construct the sequence as
before. In that way we have d(x,,Tz,) < ¢(d(zn—1,T2,-1)) a decreasing se-
quence with a lower bound. If d(z,,Tx,) — ¢ > 0, then VN € N,In(N) > N
such that d(x,,(ny, Tzn(n)) > €. Therefore € < d(x, (), TTr(n)) < (d(@Zn(n)—1,TTn(N)=1)),



letting n — oo, we have ¢(€¢’) > € a contradiction. So d(x,,Tz,) — 0. Now fix
a small > 0, let the sequence start from d(z1,T21) < 7.

To show d(Syi,y;) — 0 too, notice d(yi, Sy;) = d(STxpn,—1,Txp,—1) <
d(STxp,—1,5%n,—1) +d(Sxp,—1,TTpn,—1). Given any € > 0 by uniform continu-
ity, there exists an ' > 0, such that if d(Txy, 1, %n,—1) <1/, then d(STxy, 1, STp,—1) <
€, by construction, we can always find a large n; such that d(Tzp, 1, Zn,—1) <7/,
so the d(STxp,—1,Sxn,—1) part is done.

We just need to show d(Sz,,—1,Tx,,—1) will also go to zero. Now we have
two cases, the first case is that we can always find infinitely many consecutive
y; and ;41 such that |n; —n; 1| > M; the second case is that we cannot do so.

In the first case, pass to the subsequence of such y;’s, we have x,,_1 =
Tp(inifl)flxnrp(xnrl) since p < M by assumption, so

d(Sxm—lv Txn,-—l)
:d(STp(Ini71)71xnifp(wni—1 ni*p(ajnifl))
d(STp(ifni—1)_1xni7p(mni_1)’ Tp(mni—l)+1xniip(xni_l)) + d(Tp(zni—1)+1xnﬁp(zni_l), Tp(x’li—l)xni,p(zni_l))

w(d(Txﬂi—lv xni_l)) + d(T‘x’ﬂl ; xnz)

) TTPEni=1) "1y

NN

Therefore, for Ve > 0, we can always find an n; large enough such that d(Tzp, 1, Zn,—1) <

w_l(g) and d(Txp,,xn,) < § and we are done.

The second case is similar to Austin’s proof in [3]: in this case, we can trun-
cate the sequence x,, from a very large n such that after the truncation every y;
and y;,1 are separated at most Mn for all . Then we are still interested in the
y;'s. Notice d(yi, Svi) < d(yi, Yi+1) + d(Yit1,Sy:) < Mn + d(yi+1,y:). For any
pair y; and y;41, let L; := d(y;,y;+1), then further we have two cases: either T'
contracts L; for some 7 or not.

If T contracts L; for some i, we have

Li = d(yi, yiv1) < d(yi, Tyi) + d(Tys, Tyiv1) + d(Tyiv1, yiv1)
<n+o¢(Li)+n

Therefore, (id — ¢)(Lg) < 2n. When € is small enough € < ¢, we can let
2n < (id — ¢)(€) and have Ly, < ¢ and we are done for this part.

If T' does not contract L; for any ¢, then S does, so fix any @

Liv1 < d(Wir1,yiv2) < d(S(Yi), vir1) + d(SWi), S(Wiv1)) + d(S(Yit1), vit2)
< Mn+ ¢(L;) + Mn

Therefore if (id— ¢)(L;) > 3Mmn, then L; 1+ Mn < 3Mn+¢(L;) = L; +3Mn+
¢(Ll) — Ll < Ll If still (Zd— ¢)(L1+1) > 3M77, we will have Li+2 + M77 < Li+1.
This decreasing sequence will terminate some time since the difference M7 is
fixed, which means that (id — ¢)(L;) < 3Mn someday. When e is small enough,



we can let 3Mn < (id — ¢)(e) and this gives us L; < € and we are finally
done. O

Although in this theorem we can get rid of the equicontinuity condition of
an infinite family and have fixed point result, the conditions imposed are really
forced. We just remark that there are also other ways to produce similar results,
namely changing the v in third condition to act differently on the orbit.

3 Set-Valued Result

Recall that a correspondence F' is a multivalued function and a function f is
called a selection of F'if f € F pointwisely. In a metric space, we define the con-
tinuity and Lipschitzness of a correspondence using the Hausdorff metric, that
is, dy (A, B) := max{sup,cy inf,ey d(x,y),sup,cy infrex d(z,y)}. We ask the
question whether a pair of commuting Lipschitz correspondence and Lipschitz
function would lead to a pair of commuting Lipschitz selection and Lipschitz
function. The partial answer that we have now is given in the theorem below.

Theorem 4. Given X < R™ a compact and convex subset, if F: X =3 X a Lip-
schitz compact-and-convez-valued correspondence commutes with g € C(X, X)
an isometry, then F' admits a Lipschitz selection f such that fg = gf. Further,
we have lip(f) < nlip(F).

Proof. The proof relies on an application of Schauder’s fixed point theorem: ev-
ery continuous self-map on a nonempty compact and convex subset of a normed
linear space has a fixed point [6] .

First we refer to the classical theorem about Lipschitz selection [7]: A Lips-
chitz set-valued map F' from a metric space to nonempty closed convex subsets
of R™ has a Lipschitz selection f. The selection is constructed using the Steiner
point s, (K) of a compact set K < R”

sn(K) m(do (K, p))dp

1
~ Vol(B") f
where 0o (K,p) := {x € K| < p,x >= o(K,p)} and o is the support function.
It can be shown that s, (K) € K and ||s,,(K) — sn(L)|| < ndy (K, L).

This theorem tells us that the set F := {f is a Lipschitz selection of F,lip(f)
nlip(F)} is a nonempty subset of C(X, X) c C(X,R"). Equip F with the sup
norm from C'(X,R"™), F is convex since F' is convex, so the convex linear com-
binations of selections are still selections and since lip : C(X,X) — Ry is
homogeneous, we still have lig(f) < nlip(F). We are going to show that F is
compact by first showing it is complete and then use Arzela-Ascoli. Then we
are going to define an operator on F with a fixed point, which is the selection
that commutes with g.

F is complete: Consider (f;) € F* Cauchy, for each z € X, (fi(x)) is a
Cauchy sequence, since X is complete, we can define f(z) := f;(x). Now we
need to show (1) f(z) € F(z), (2)the convergence f; — f is uniform and (3) f



is Lipschitz with lip(f) < nlip(F).

(1) is true since F is closed valued, f;(z) € F(x), fi(x) — f(x) implies
that f(x) € F(x). (2) is true since Ve > 0,3IN € N such that |f,(z) —
fm(@)| < |fn — fll < €,¥m,n > N,Vz € X. Sending m — o0, we have
Ve € X,|fu(z) — f(z)] < e. Also for z, — x we have |f(z,) — f(z)| <
[f(@n) = filzn)| + [filan) = fi@)| + |fi(z) = f(x)] = 0 = [ is continuous

= || f|| makes sense. Therefore ||f, — f|| — 0.

(3) is true since Va,y € X, | fi(z) — fi(y)| < nlip(F)|z —y| for all i € N. since
|[fi(2) = fi(y) = f(2)+ f(y)] = 0 as i — oo, we have | f(z)—f(y)| < nlip(F)[z—yl.

Now to show F is compact, we only need to show it is totally bounded.
By Arzela-Ascoli, we need to show F is pointwise bounded and equicontinuous:
Ve e X, {f(z): f € F} < F(x) is bounded, so F is pointwise bounded. It is
equicontinuous since given any €, the § can be taken as ¢/(nlip(F)).

Now we know F is compact, we define an operator ¢, : F — F by ¢4(f) :=
gt o foyg. To show ¢, is well-defined, we need to show c,(f) € F, that
is (1) cg(f)(x) € F(x) for all z € X and (2) ¢,(f) is still Lipschitz with
lip(cq(f)) < nlip(F).

(1) is true since cy(f)(z) € gl o Fog(z) =g logoF(z) = F(z),Vx e X
since gF = Fg.
(2) is true since

leg(f)(@) — g (f)(y)] |fg(z) — fg(y)|
Hlgly) —g(y)|

Hlip(g)lz -yl
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therefore lip(cq(f)) = lip(f).

Finally to use Schauder’s fixed point theorem, we only need to show ¢, is
continuous. So consider a sequence f; in F that converges to f in the sup norm.
Ve > 0,3N(e) € N such that Vn > N,Vx € X,|fig(z) — fg(z)| < e. Since X
is compact, we know g1 is uniformly continuous, i.e, Ve > 0,35(¢) such that
Y|z — 22| < 8(€), |g7 (1) — g7 1 (x2)| < €. Now fix any € > 0, just take N (5(e))
and we are done.

¢g has a fixed point tells us that there is a selection f of F' with lip(f) <
nlip(F') such that c¢4(f) = f, which means that fg = gf. O

Remark

An easy generalization is that we can relax the assumption for g to let it be
bi-Lipschitz and lip(g)lip(g~') < 1 since we only used these conditions in the
proof.



3.1 Discussion

As we can tell, the result above is still quite naive and far from ideal. We
can see there are at least two steps from here to an ideal result. The first
one is about g being isometry, if we can relax this requirement such that g is
just Lipschitz, we can arrive at some interesting result in its own right, that
is, if a Lipschitz function commutes with a Lipschitz correspondence, then the
Lipschitz correspondence admits a Lipschitz selection that commutes with that
function. We can not do this relaxation in our proof above since if g is not
invertible then the pivotal ¢, will be ill-defined. Even if we only require g to be
bi-Lipschitz, ¢, (f) may still be outside F since lip(g)lip(g~*) may be large. The
second step is to relax the requirement about Lipschitzness of both operators
to mimic the situation in the first part, that is, given any pair of points, either
the correspondence F or the function g will contract them. If the F' still admits
a selection f satisfying this property and commuting with g, then from [3] we
know f and g have a common fixed point, hence F' and g has a common fixed
point.
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