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Motivation

Motivation

m Volatility indices, such as the VIX index, are not only used as
market-implied indicators of volatility.

m Futures and options on these indices are also widely used as
risk-management tools to hedge the volatility exposure of options
portfolios.

m The very high liquidity of S&P 500 (SPX) and VIX derivatives requires
that financial institutions price, hedge, and risk-manage their SPX and
VIX options portfolios using models that perfectly fit market prices of
both SPX and VIX futures and options, jointly.

m Calibration of stochastic volatility models to liquid hedging instruments:
SPX options 4+ VIX futures and options.

m Since VIX options started trading in 2006, many researchers and
practitioners have tried to build such a jointly calibrating model, but could
only, at best, get approximate fits.

m “Holy Grail of volatility modeling”
m Very challenging problem, especially for short maturities.
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Figure: SPX smile as of January 22, 2020, 7' = 30 days
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m ATM skew:
Definition: Sy = e T)
o K=Fp
SPX, small T St ~ —-1.5
1
Classical one-factor SV model: St = 5 X spot-vol correl x vol-of-vol
—

m Calibration to short-term ATM SPX skew —>
vol-of-vol > 3 = 300% > short-term ATM VIX implied vol

The very large negative skew of short-term SPX options, which in classical
continuous SV models implies a very large volatility of volatility, seems
inconsistent with the comparatively low levels of VIX implied volatilities.
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Gatheral (2008)

Consistent Modeling of SPX and VIX options

Consistent Modeling of SPX and VIX options J

Jim Gatheral

@g Merrill Lynch

The Fifth World Congress of the Bachelier Finance Society
London, July 18, 2008
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Consistent Modeling of SPX and VIX options
Variance curve models
Double CEV dynamics and consistency

Double CEV dynamics

@ Buehler's affine variance curve functional is consistent with
double mean reverting dynamics of the form:

L - waw
dv = —k(v—V)dt+mv*dZ
dv = —c(V —z)dt+mpv’dZ (2)

for any choice of a, 5 € [1/2,1].
o We will call the case v = 3 = 1/2 Double Heston,
o the case o = 3 = 1 Double Lognormal,
o and the general case Double CEV.
@ All such models involve a short term variance level v that
reverts to a moving level v/ at rate x. v’/ reverts to the
long-term level z3 at the slower rate ¢ < k.
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Motivation

Consistent Modeling of SPX and VIX options
The Double CEV model
Calibration of &1, &> to VIX option prices

Double CEV fit to VIX options as of 03-Apr-2007

Setting the correlation p between volatility factors z; and z; to its historical average (see later) and iterating on
the volatility of volatility parameters £; and £, to minimize the differences between model and market VIX option
prices, we obtain the following fits (orange lines)
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Motivation

Consistent Modeling of SPX and VIX options
The Double CEV model
Calibration of p1 and 3 to SPX option prices

Double CEV fit to SPX options as of 03-Apr-2007

Minimizing the differences between model and market SPX option prices, we find p; = —0.9, py = —0.7 and
obtain the following fits to SPX option prices (orange lines)
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Fit to VIX options

T=0.12
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Fit to VIX options

T=0.21
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Fit to SPX options
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Motivation

Fit to SPX options
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Similar experiments with other models

m Skewed 2-factor Bergomi model (Bergomi 2008)
m Skewed rough Bergomi model (G. 2018, De Marco 2018):

ol =¢ ((1 —NE (VO /Ot(t - s)H*%dzs) +AE (yl /Ot(t - s)Hfl/QdZS))

with A € [0, 1].
m Quadratic rough Heston model (Gatheral Jusselin Rosenbaum 2020)
VIX smile well calibrated = not enough SPX ATM skew
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ewed rough Bergomi: Calibration to VIX futures and options (G. 201

VIX implied volatilities as of March 21, 2018

& T=008
& T=015
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Motivation

Skewed rough Bergomi: Calibration to VIX futures and options (G. 201

VIX implied volatilities as of March 21, 2018: H=0.10, T=0.08
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Skewed rough Bergomi: Calibration to VIX futures and options (G. 201

VIX implied volatilities as of March 21, 2018- H=0.10, T=0.15
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Skewed rough Bergomi: Calibration to VIX futures and options (G. 201

VIX implied volatilities as of March 21, 2018- H=0.10, T=025
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Skewed

implied vol
-
o

ugh Bergomi: Calibration to VIX future and options (G. 2018)

VIX implied volatilities as of March 21, 2018- H=0.10, T=033
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Skewed rough Bergomi calibrated to VIX: SPX smile (G. 20

SPX implied volatilities, Tspx = 0.08
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Motivation

Quadratic rough Heston model (Gatheral Jusselin Rosenbaum 2020)
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Motivation

Quadratic rough Heston model (Gatheral Jusselin Rosenbaum 2020)
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Quadratic rough Heston model (Gatheral Jusselin Rosenbaum 2020)
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Quadratic rough Heston model (Gatheral Jusselin Rosenbaum 2020)
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Motivation

Joint calibration of 2-factor Bergomi model to term-structure of SPX ATM
skew and VIX? implied vol (G. 2020)

THE VIX FUTURE IN BERGOMI MODELS:
ANALYTIC EXPANSIONS AND JOINT CALIBRATION WITH S&P 500 SKEW

JULIEN GUYON
[ITATIVE RESEARCH, BLOOMBERG L.P.

QUA

Asstract. We derive the expansion of the price of a VIX future in various Bergomi models at order 6
in small volatility-of-volatility. We introduce the notion of volatility of the VIX squared implied by the
. expand this quantity at order 5, and show that the
sion. We cover the one-factor, two-
two-factor Bergomi models and allow for maturity-dependent and/or time-dependent
5. The expansions allow us to precisely pinpoint the roles of all the model parameters (volatilit;
of-volatility, mean reversions, correlations, mixing fraction) in the formation of the prices of VIX futures
in Bergomi models. The derivation of the expansion naturally involves the (classical or dual bivariate)
Hermite polynomials and exploits their orthogonality properties. When the initial term-structure of variance
swaps is flat, the expansion is a closed-form expression; otherwise, it involves one-dimensional integrals
which are extremely fast to compute. The VIX? implied volatility expansion is extremely precise for both
the one-factor model and the two-factor model with independent factors, even for the very large values of
/ that are usual in equity derivatives markets, and can virtually be considered an exact
formula in those cases. We use the new expansion together with the Bergomi-Guyon expansion of the S&P
500 smile to (instantaneously) calibrate the two-factor Bergomi model jointly to the term-structures of S&P
500 at-the-money skew and VIX? implied volatility. Our tests and the new expansion shed more light on
the inability of traditional stochastic volatility models to jointly fit S&P 500 and VIX market data. The
(imperfect but decent) joint fit requires much larger values of volatility-of-volatility and fast mean reversion
than the ones previously reported in [10, [14]

volatility-of-volatili

Keywords. VIX, VIX futures, Bergomi models, VIX? implied volatility, analytic expansion, small volatlity-

of-volatility, at-the-money skew, S&P 500/ VIX joint calibration, Hermite polynomials,

1. INTRODUCTION

Closed-form approximations are always very useful in mathematical modeling. They give insights on the
structural properties of the models and the precise role of model parameters. They are computed in no time

Julien Guyon ®© 2021 Bloomberg Finance L.P. All rights reserved.
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Joint calibration of 2-factor Bergomi model to term-structure of SPX ATM
skew and VIX? implied vol (G. 2020)

Term-structure of SPX ATM skew as of October 8, 2019 Term-structure of VX2 implied volatility as of October 8, 2019
. o Market 4501 o Market
6 2F Bergomi model with p =0, SPX ATM skew expansion Y 2F Bergomi model with o =0, VIX? implied volatilty expansion:
(Bergomi-Guyon, order 2): \

---- Calibration to the term-structure of VIX” implied volatility only
—— Calibration to the term-structure of SPX ATM skew only

Joint calibration to the term-structures

of VIX? implied volatility and SPX ATM skew

41 —— Calibration to the term-structure of SPX ATM skew only

i === Calibration to the term-structure of VIX? implied volatility only
| Joint calibration to the term-structures.
3 " of SPX ATM skew and VIX? implied volatility

o =

o
>
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VIX? implied volatility in percent
g
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Figure: Left: ATM skew of SPX options as a function of maturity. Right: implied
volatility of the squared VIX as a function of maturity. Calibration of the
Bergomi-Guyon expansion of the SPX ATM skew and a newly derived expansion of the
VIX? implied volatility, either jointly or separately. Calibration as of October 8, 2019
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Related works with continuous models on the SPX

m Fouque-Saporito (2018), Heston with stochastic vol-of-vol. Problem: their
approach does not apply to short maturities (below 4 months), for which
VIX derivatives are most liquid and the joint calibration is most difficult.

m Goutte-Ismail-Pham (2017), Heston with parameters driven by a Hidden
Markov jump process.

m Jacquier-Martini-Muguruza, On the VIX futures in the rough Bergomi
model (2017):

“Interestingly, we observe a 20% difference between the [vol-of-vol] pa-
rameter obtained through VIX calibration and the one obtained through
SPX. This suggests that the volatility of volatility in the SPX market
is 20% higher when compared to VIX, revealing potential data incon-
sistencies (arbitrage?).”

m Guo-Loeper-Obtoj-Wang (2020): joint calibration via semimartingale
optimal transport. Closely related to VIX-contrained martingale
Schrodinger bridges.

Julien Guyon © 2021 Bloomberg Finance L.P. Al rights reserved.
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m To try to jointly fit the SPX and VIX smiles, many authors have
incorporated jumps in the dynamics of the SPX: Sepp, Cont-Kokholm,
Papanicolaou-Sircar, Baldeaux-Badran, Pacati et al, Kokholm-Stisen,
Bardgett et al...

m Jumps offer extra degrees of freedom to partly decouple the ATM SPX
skew and the ATM VIX implied volatility.

m So far all the attempts at solving the joint SPX/VIX smile calibration
problem only produced an approximate fit.

Julien Guyon © 2021 Bloomberg Finance L.P. Al rights reserved.
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ispersion-constrained martingale optimal transport

Exact joint calibration
via dispersion-constrained
martingale optimal transport

(G. 2019)

Julien Guyon (@© 2021 Bloomberg Finance L.P. All rights reserve
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Dispersion-constrained martingale optimal transport

Exact joint calibration via dispersion-constrained MOT (G. 2019)

m A completely different approach: instead of postulating a parametric
continuous-time (jump-)diffusion model on the SPX, we build a
nonparametric discrete-time model:

m Help to decouple SPX skew and VIX implied vol.
m Perfectly fits the smiles.
m Given a VIX future maturity 77, we build a joint probability measure on
(S1,V, S2) which is perfectly calibrated to the SPX smiles at 71 and
T = T1 + 30 days, and the VIX future and VIX smile at T3.

m S1: SPX at T3, V: VIX at Ty, S2: SPX at T5.
m Our model satisfies:
m Martingality constraint on the SPX;
m Consistency condition: the VIX at Tj is the implied volatility of the 30-day
log-contract on the SPX.
m Our model is cast as the solution of a dispersion-constrained martingale
transport problem which is solved using the Sinkhorn algorithm, in the
spirit of De March and Henry-Labordére (2019).

Julien Guyon © 2021 Bloomberg Finance L.P. Al rights reserved.
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Dispersion-constrained martingale optimal transport

Risk, April 2020

Julien Guyon

The joint S&P 500/Vix smile calibration

puzzle solved

Since Vix options started trading in 2006, many researchers have tried to build a model that jointly and exactly calibrates to the prices of
Standard & Poor’s 500 options, Vix futures and Vix options. In this article, Julien Guyon solves this long-standing puzzle by casting it as a
discrete-time dispersion-constrained martingale transport problem, which he solves in a non-parametric way using Sinkhorn’s algorithm

olatility indexes, such as the Vix index, do not just serve as market-
implied indicators of volatility. Futures and options on these
i indexes are also widely used as risk management tools to hedge the
volatility exposure of options portfolios. The existence of a liquid market for
these futures and options has led to the need for models that jointly calibrate
to the prices of options on the underlying asset and the prices of volatility
derivatives. Without such models, financial institutions could possibly arbi-
trage each other: even market-making desks within the same institution could
do so, eg, the Vix desk could arbitrage the S&P 500 (SPX) desk. By using
models that fail to correctly incorporate the prices of the hedging instru-
ments, such as SPX options, Vix futures and Vix options, exotic desks may
misprice options, especially (but not only) those with payoffs that involve
both the underlying and its volatility index.

For this reason, since Vix options began trading in 2006, many researchers
and practitioners have tried to build a model that jointly and exactly cali-
brates to the prices of SPX futures, SPX options, Vix futures and Vix options.
“This is known to be a very challenging problem, especially for shore matu-
rities. In particular, the very large negative skew of short-term SPX options,

The Joint S&P 500/VIX Smile Calibration Puzzle Solved

and Vix smiles: that the distribution of the Dupire market local variance be
smaller than the distribution of the (instantaneous) Vix squared in the convex
order, at all times. He also reported that for short maturities the distribution
of the true Vix squared in the marker local volatility model is actually larger
than the market-implied distribution of the true Vix squared in the convex
order. Guyon showed numerically that when the (typically negative) spot-vol
correlation is large enough in absolute value, both (a) traditional stochastic
volatility models with large mean reversion and (b) rough volatility models
with asmall Hurst exponent can reproduce this inversion of convex ordering.
Acciaio, & Guyon (2020) provide a mathematical proof that the inversion
of convex ordering can be produced by continuous models. However, the
inversion of convex ordering is only a necessary condition for the joint SPX/
Vix calibration of continuous models; it is not sufficient.

Since it looks to be very difficult to jointly calibrate the SPX and Vix
smiles with continuous models, many authors have incorporated jumps in
the dynamics of the SPX: see references in Guyon (2019a). Jumps offer
extra degrees of freedom to partly decouple the ATM SPX skew and the

© 2021 Bloomberg Finance L.P. All rights reserved.



Dispersion-constrained martingale optimal transport

Setting and notation

51,V So

Ty, «—————— 30days ——» T}

m For simplicity: zero interest rates, repos, and dividends.
m p1 = risk-neutral distribution of S; <— market smile of SPX at 73.
m Ly = risk-neutral distribution of V' <— market smile of VIX at T3.

m Lo = risk-neutral distribution of Sz <— market smile of SPX at T%.
m Fy: value at time 0 of VIX future maturing at 77.
[

We denote E? := E#, EV := E*V and assume
E'[Si] = So, E[[InSi|] <oo, i€{1,2}; EV[V]=Fy, EY[V’] < oo

m No calendar arbitrage <= p1 <. p2 (convex order)

Julien Guyon © 2021 Bloomberg Finance L.P. Al rights reserved.
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Dispersion-constrained martingale optimal transport

Setting and notation

2., S . S
V2= (VIXp )? = —;Pmce;r1 {ln (é)} = Pricen, [L (é)]

m 7 := 30 days.

m L(z) := —2Inz: convex, decreasing.

L(s)

Julien Guyon 2021 Bloomberg Fi e L.P. All rights reserved.
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Dispersion-constrained martingale optimal transport

Superreplication, duality

All rights reserve

The Joint S&P 500/VIX Smile Calibration Puzzle Solved



Dispersion-constrained martingale optimal transport

Superreplication of forward-starting options

>

m The knowledge of p1 and p2 gives little information on the prices
E*[g(S1, S2)]. e.g., prices of forward-starting options E*[f(S2/51)].
m Computing upper and lower bounds of these prices:
Optimal transport (Monge, 1781; Kantorovich)

m Adding the no-arbitrage constraint that (S1,S2) is a martingale leads to
more precise bounds, as this provides information on the conditional
average of S2/S1 given Si:

Martingale optimal transport (Henry-Labordere, 2017)

m When S = SPX: Adding VIX market data information produces even more
precise bounds, as it gives information on the conditional dispersion of
S2/S1, which is controlled by the VIX V:

Dispersion-constrained martingale optimal transport

Julien Guyon © 2021 Bloomberg Finance L.P. Al rights reserved.
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Dispersion-constrained martingale optimal transport

Classical optimal transpor

-6

Figure: Example of a transport plan. Source: Wikipedia
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Dispersion-constrained martingale optimal transport

Superreplication: primal problem

Fundamental principle: Upper bound for the price of payoff f(S1,V,S2) =
smallest price at time 0 of a superreplicating portfolio.

Following De Marco-Henry-Labordére (2015), G.-Menegaux-Nutz (2017), the
available instruments for superreplication are:
m At time 0:
m u1(S1): SPX vanilla payoff maturity T (including cash)
m uz(S2): SPX vanilla payoff maturity T>
m uy (V): VIX vanilla payoff maturity T}
Cost: MktPrice[u1(S1)] + MktPrice[uz(S2)] + MktPrice[uy (V)]
= E'lw(S)]  +  Efuw(S2)] +  EV[uv(V)]
m At time T1:
m Ag(S1,V)(S2 — S1): delta hedge
m Ar(S1,V)(L(S2/S1) — V?): buy Ar(S1,V) log-contracts
Cost: 0

Shorthand notation:

A (51,0, 82) 1= As1,v)(s2 — s1), AP (s1,0,50) := A(s1,0) <L (S—Q) — 1}2>

Julien Guyon © 2021 Bloomberg Finance L.P. Al rights reserved.
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Dispersion-constrained martingale optimal transport

Superreplication: primal problem

m The model-independent no-arbitrage upper bound for the derivative with
payoff f(S1,V, S2) is the smallest price at time 0 of a superreplicating
portfolio:

Py = in {El [u1(S1)] + EY [uy (V)] + E2 [u2(52)]} .

m Uy: set of superreplicating portfolios, i.e., the set of all functions
(u1,uv,u2, Ag, Ar) that satisfy the superreplication constraint:

ur(s1) + uy (v) +ua(s2) + AY (51,0, 52) + AP (51,0, 52) > (51,0, 52).

m Linear program.

Julien Guyon > 2021 Bloomberg Finance L.P. All rights reserved.
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Dispersion-constrained martingale optimal transport

Superreplication: dual problem

m P(u1, pv, u2): set of all the probability measures © on Rsg X R>o X Rxso
such that

So

Sl~,ul7 ‘/N,u/v7 SQN/J,Q, EM [SQ|Sl,V]=Sl, EM [L (37)

Sl,V} =V2
1

m Dual problem:

Dy := sup  E[f(51,V,82)].
BEP(p1,pv ,12)
m Dispersion-constrained martingale optimal transport problem.
m E#[S3|S1, V] = S1: martingality condition of the SPX index, condition on
the average of the distribution of S given S; and V.
m E*[L(S2/51)|S1,V] = V2 consistency condition, condition on dispersion
around the average.

> 2021 Bloomberg Finance L.P. All rights reserved.
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Dispersion-constrained martingale optimal transport

Superreplication: strong duality theorem (absence of a duality gap)

Theorem (G. 2020)

Let f:Rs0 x R>o X Rsg — R be upper semicontinuous and satisfy
|f(s1,0,82)] < C(1 481+ 52+ |L(s1)| + |L(s2)| + v*)

for some constant C' > 0. Then
Py i=inf {E' fus (1)) + EY [uv (V)] + E*[us(52)]}
f

= sup  EM[f(S,V,S)] = Dy.

HEP(p1,pv ,12)

Moreover, Dy # —oo if and only if P(p1, pv, u2) # 0, and in that case the
supremum is attained.

Julien Guyon (@© 2021 Bloomberg Finance L.P. All rights reserved.
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Dispersion-constrained martingale optimal transport

Superreplication of forward-starting options

m The knowledge of p1 and p2 gives little information on the prices
E*[g(S1, S2)], e.g., prices of forward-starting options E#[f(S2/51)].
m Computing upper and lower bounds of these prices:
Optimal transport (Monge, 1781; Kantorovich)

m Adding the no-arbitrage constraint that (S1,S2) is a martingale leads to
more precise bounds, as this provides information on the conditional
average of S2/S1 given Si:

Martingale optimal transport (Henry-Labordére, 2017)

m When S = SPX: Adding VIX market data information produces even more
precise bounds, as it information on the conditional dispersion of S2/51,
which is controlled by the VIX V:

Dispersion-constrained martingale optimal transport

m Adding VIX market data may possibly reveal a joint SPX/VIX
arbitrage. Corresponds to P(u1, pv, p2) = 0 (see next slides).

m In the limiting case where P (1, pv, u2) = {10} is a singleton, the joint
SPX/VIX market data information completely specifies the joint
distribution of (51, S2), hence the price of forward starting options.

Julien Guyon © 2021 Bloomberg Finance L.P. Al rights reserved.
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Dispersion-constrained martingale optimal transport

Joint SPX/VIX arbitrage
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Dispersion-constrained martingale optimal transport

Joint SPX/VIX arbitrage

m Uy = the portfolios (u1,ug,uy, A5, AL) superreplicating 0:

52

wy (s1)+uz(s2)Fuy (v)+A% (51,0)(s2—51)+A" (51, )<L (—) va) >0

S1
m An (51, S2,V)-arbitrage is an element of Uy with negative price:
MktPrice[u1(S1)] + MktPrice[uz(S2)] + MktPrice[uv (V)] < 0
m Equivalently, there is an (S1, S2, V')-arbitrage if and only if

ig{lf{MktPrice[ul(Sl)] + MktPrice[uz(S2)] + MktPrice[uy (V)]} = —o0

Julien Guyon © 2021 Bloomberg Finance L.P. Al rights reserved.
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Dispersion-constrained martingale optimal transport

Consistent extrapolation of SPX and VIX smiles

If BV [V?] # E2[L(S2)] — E*[L(S1)], there is a trivial (S1, Sz, V)-arbitrage.
For instance, if EV[V?] < E?[L(S2)] — E*[L(S1)], pick

ui(s1) = L(s1), wuz2(s2) = —L(s2), uv(v)=v>, As(s;,v)=0, Ar(si,v)=1.

Julien Guyon

— We assume that
EY[V?] = E[L(S2)] — E'[L(S))]. (2.1)
Violations of (2.1) in the market have been reported, suggesting arbitrage

opportunities, see, e.g., Section 7.7.4 in Bergomi (2016).

However, the quantities in (2.1) do not purely depend on market data.
They depend on smile extrapolations.

The reported violations of (2.1) actually rely on some arbitrary smile
extrapolations.

G. (2018) explains how to build consistent extrapolations of the VIX
and SPX smiles so that (2.1) holds.

© 2021 Bloomberg Finance L.P. Al rights reserved.

The Joint S&P 500/VIX Smile Calibration Puzzle Solved



Dispersion-constrained martingale optimal transport

Joint SPX/VIX arbitrage

Theorem (G. 2020)

The following assertions are equivalent:
(i) The market is free of (S1,S2,V)-arbitrage,

(ii) P(pa, pv, p2) # 0,

(iii) There exists a coupling v of p1 and py such that Law, (S, L(S1) + V?)
and Law,,, (S2, L(S2)) are in convex order, i.e., for any convex function
f:Rso xR >R,

E”[f(S1,L(S1) + V?)] < E*[f(Sz2, L(S2))]-

Julien Guyon (@© 2021 Bloomberg Finance L.P. All rights reserved.
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Dispersion-constrained martingale optimal transport

Build a model in P(uy, py, o)
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Dispersion-constrained martingale optimal transport

Build a model in P(u1, pv, p2)

m Recall P(u1, pv, p2) := probability measures on Rso X R>o X Rso s.t.

S
Si~pr, Ve~py, So~pe, EF[S2]S1,V]=51, E* [L(SQ>

1

sl,v} =V2

m Build a model 1 € P(u1, pv, u2) = solve the joint calibration puzzle.

m Our strategy is inspired by Avellaneda (1998, 2001) and De March and
Henry-Labordere (2019).

m We assume that P(u1, pv, p2) # 0 and try to build an element 4 in this
set. To this end, we fix a reference probability measure i on
Rso X R>p X Rso and look for the measure p € P(u1, pv, p2) that
minimizes the relative entropy H (u, i) of p w.r.t. fi, also known as the
Kullback-Leibler divergence:

Dp = inf H(M,ﬂ), H(/’Lvﬁ) =

HEP(11,pv ,H2)

E* [m%g] — EF [%gm%g} if u < I,
+00 otherwise.

m This is a strictly convex problem that can be solved after dualization
using, e.g., Sinkhorn’s fixed point iteration (Sinkhorn, 1967).

Julien Guyon © 2021 Bloomberg Finance L.P. Al rights reserved.
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Dispersion-constrained martingale optimal transport

Build a model in P(u1, pv, p2)

P(pa, pov, ph2)

2021 Bloomberg Fin All rights reserve
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Dispersion-constrained martingale optimal transport

A technique inspired by Marco Avellaneda’s ideas (NYU)

® Minimum relative entropy approach for calibration purposes was
pioneered by Avellaneda at the end of the 90s.

m Marco Avellaneda: Minimum-relative-entropy calibration of asset pricing
models. International Journal of Theoretical and Applied Finance,
1(4):447-472, 1998.

m Marco Avellaneda, Robert Buff, Craig Friedman, Nicolas Grandchamp,
Lukasz Kruk, and Joshua Newman: Weighted Monte Carlo: a new
technique for calibrating asset-pricing models. International Journal of
Theoretical and Applied Finance, 4(1):91-119, 2001.

m Our approach is very much inspired by Marco's ideas.

m Here we have added (a) martingality constraint on the SPX and (b)
constraint on prices of VIX options.

Julien Guyon © 2021 Bloomberg Finance L.P. Al rights reserved.
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Dispersion-constrained martingale optimal transport

Reminder on Lagrange multipliers

(in§7 flxz,y) = inf sup {f(z,y) — A(g(z,y) — )}
g(z,y)=c Z,Y XER
= sup inf {f(z,y) — Mg(z,y) — o)}
AER &Y

m To compute the inner inf over x,y unconstrained, simply solve
Vf(z,y) = AVg(z,y): easy!

m Then maximize the result over A\ unconstrained: easy!

= Constraint g(z,y) = ¢ < Z{f(z,y) — Ag(z,y) —c)} = 0.

inf  H(p,p) = infsup{H(p, i) +E [ui(Sh)] — B [w(Sl)]}
pst Si~pn EO)
inf H(p,p) = inf s H(u,p) —E*[A -
wor g 2L s, HnB) in AZ‘i?.>{ (1 1) [As(S1,V)(S2 51)]}
. N, _ u Sa 2
inf  H(p,p) = inf sup {H(p,,u) —E* |[AL(S,V)(L| =) -V }
w st ER [L(g—f)‘sl,v]:vi’ KAL) 51

Julien Guyon © 2021 Bloomberg Finance L.P. Al rights reserved.
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Dispersion-constrained martingale optimal transport

Reminder on Lagrange multipliers

(in§7 flxz,y) = inf sup {f(z,y) — A(g(z,y) — )}
g(z,y)=c Z,Y NeER
= sup inf {f(z,y) — Mg(z,y) —c)}
AER T>Y

m To compute the inner inf over x,y unconstrained, simply solve
Vf(z,y) = AVg(z,y): easy!

®m Then maximize the result over A unconstrained: easy!

= Constraint g(z,y) = ¢ < Z{f(z,y) — Ag(z,y) —c)} = 0.

inf  H(p,p) = infsup{H(p, i) +E [ui(Sh)] — B [w(Sl)]}
wst Sievp By (1)
inf H(p,g) = inf s H(p, i) —E' [As(S1,V)(S2 — S
onmeitl g, H ) in Ai}l(g){ (1, 12) [As (51, V)(S2 1)]}
. N, _ u Sa 2
inf  H(p,p) = inf sup {H(p,,u)—IE Ar(S,V)(L|=)—-V }
st ]EM[L(%’)‘SLV]:VQ HOAL() 51
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Dispersion-constrained martingale optimal transport

Build a model in P(u1, pv, p2)

m M;: set of probability measures on R~¢ X R>o X R>¢: unconstrained
m U: set of portfolios u = (u1,uy,u2, Ag,Ar): Lagrange multipliers

Dﬂ = inf H(,LL, ﬂ)

HEP(p1,1v ,H2)

= inf sup {H(u ) + E'ur (1)) + EY [uv (V)] + Efuz(S)]

HEMI yeu

B [ua(81) + uv (V) + us(S2) + AP (S1,V, 82) + AP (51, 52)] }

= sup ir}& H(/L, ,[L) + El[ul(Sl)] + EY [UV (V)] + E? [UQ(SQ)]
wel HEM1

—B [ur (S1) + u (V) + ua(82) + AL (51, V,52) + AP (51,1, 52)] }

© 2021 Bloomberg Finance L.P. Al rights reserved.
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Dispersion-constrained martingale optimal transport

Build a model in P(u1, pv, p2)

m M;: set of probability measures on R~¢ X R>o X R>¢: unconstrained
m U: set of portfolios u = (u1,uy,u2, Ag,Ar): Lagrange multipliers

Dﬂ = inf H(,LL, ﬂ)

REP(p1,0v ,12)

= inf sup {H(u, ) +E'[ur (50)] + B fuy (V)] + E*[uz(S2)]
HEMI yeu

—B [un(51) + v (V) +ua(S2) + AP (81,V; 82) + AP (51, V,52)] }

= sup ir}& H(/L, ,[L) + El[ul(Sl)] + EY [UV (V)] + E? [UQ(SQ)]
wel HEM1

—B [ur (S1) + u (V) + ua(82) + AL (51, V,52) + AP (51,1, 52)] }
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Dispersion-constrained martingale optimal transport

Build a model in P(u1, pv, p2)

m M;: set of probability measures on R~¢ X R>o X R>¢: unconstrained
m U: set of portfolios u = (u1,uy,u2, Ag,Ar): Lagrange multipliers

Dﬂ = inf H(,LL, ﬂ)

REP(p1,0v ,12)

= inf sup {H(u, ) +E'fur ()] + B [uy (V)] + E*[uz(S2)]
HEMI yeu

2 [un($1) + v (V) 4+ ua(S2) + AP (81, V,.52) + AP (51, V,52)] }

= sup ir}& H(/L, ,[L) + El[ul(Sl)] + EY [UV (V)] + E? [UQ(SQ)]
wel HEM1

—B [ur (S1) + u (V) + ua(82) + AL (51, V,52) + AP (51,1, 52)] }
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Dispersion-constrained martingale optimal transport

Build a model in P(u1, pv, p2)

m M;: set of probability measures on R~¢ X R>o X R>¢: unconstrained
m U: set of portfolios u = (u1,uy,u2, Ag,Ar): Lagrange multipliers

Dﬂ = inf H(,LL, ﬂ)

REP(p1,0v ,12)

= inf sup { H(u, ) +E'fur (S1)] + E Juy (V)] + E*[uz(S2)]
HEMI yeu

B [ur(81) + uv (V) +u2(52) + AP (81, V,82) + AP (81, V. 82)] }

= sup ir}& H(/L, ,[L) + El[ul(Sl)] + EY [UV (V)] + E? [UQ(SQ)]
wel HEM1

—B [ur (S1) + u (V) + ua(82) + AL (51, V,52) + AP (51,1, 52)] }
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Dispersion-constrained martingale optimal transport

Build a model in P(u1, pv, p2)

m M;: set of probability measures on R~¢ X R>o X R>¢: unconstrained
m U: set of portfolios u = (u1,uy,u2, Ag,Ar): Lagrange multipliers

Dﬂ = inf H(,LL, ﬂ)

REP(p1,0v ,12)

= inf sup {H(u, ) +E'fur (S0)] + B [uy (V)] + E*[uz(S2)]
HEMI yeu

2 [un($1) +uv (V) + ua(S2) + AL (51, V,.52) + AP (51, V,52)] }

= sup ir}& H(/L, ,[L) + El[ul(Sl)] + EY [UV (V)] + E? [UQ(SQ)]
wel HEM1

—B [ur (S1) + u (V) + ua(82) + AL (51, V,52) + AP (51,1, 52)] }
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Dispersion-constrained martingale optimal transport

Build a model in P(u1, pv, p2)

m M;: set of probability measures on R~¢ X R>o X R>¢: unconstrained
m U: set of portfolios u = (u1,uy,u2, Ag,Ar): Lagrange multipliers

Dﬂ = inf H(,LL, ﬂ)

REP(p1,0v ,12)

= inf sup {H(u, ) +E'fur (S0)] + B [uy (V)] + E*[uz(S2)]
HEMI yeu

—E [ua(81) + uv (V) + us(S2) + AP (S1,V, 82) + A (51, V,52)] }

= sup ir}& H(/L, ,[L) + El[ul(Sl)] + EY [UV (V)] + E? [UQ(SQ)]
wel HEM1

—B [ur (S1) + u (V) + ua(82) + AL (51, V,52) + AP (51,1, 52)] }
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Dispersion-constrained martingale optimal transport

Build a model in P(u1, pv, p2)

m M;: set of probability measures on R~¢ X R>o X R>¢: unconstrained
m U: set of portfolios u = (u1,uy,u2, Ag,Ar): Lagrange multipliers

Dﬂ = inf H(,LL, ﬂ)

REP(p1,0v ,12)

= inf sup {H(u ) + E'ur (1)) + EY [uv (V)] + Efuz(S)]

HEMI yeu

B [ua(81) + uv (V) + us(S2) + AP (S1,V, 82) + AP (51, 52)] }

= sup inf H(p, 1) + E ur (S1)] + EY [uv (V)] + E*[u2(S2)]
weld HEM1

—B [ur (S1) + u (V) + ua(82) + AL (51, V,52) + AP (51,1, 52)] }
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Dispersion-constrained martingale optimal transport

Build a model in P(u1, pv, p2)

Dy = S‘gg”g}al{H(M, A1) + E'ur (S1)] + EY [uy (V)] + E2[uz(S2)]

B [ua(S1) +uv (V) +ua(S2) + AP (81,V; 82) + AP (51, V,52)] }

m Remarkable fact: The inner infimum can be exactly computed:
inf {H(u, ) ~ B[X]} = — nE" [e*]
Jinf {H(uf) ~E*[X]} = —InE" [e
and the infimum is attained at ;. = fix defined by (Gibbs type)
dﬂx . e~
dip ~ EAleX]

m That is why we like (and chose) the “distance” H(u, i)

© 2021 Bloomberg Finance L.P. Al rights reserved.
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Dispersion-constrained martingale optimal transport

Build a model in P(u1, pv, p2)

Wi (u) = E'fur (S1)] + EY [uy (V)] + E?uz(S2)]

I EE |emi (S+uy (M+us(82)+a5) (51,V.82)+A ) (51,V.82) |

® inf,ep(uy,uy ,u0): CONstrained optimization, difficult.

® sup, ;. unconstrained optimization, easy! To find the optimum
u* = (u,uy,us, Ag, A7), simply cancel the gradient of ¥.

m Most important, inf,,cp(u,,uy,uz) H (14, 1) is reached at

et (1) Fud (0)+us (s2)+ A5 (s1,0,50)+87 5 (s1,0,52)

*(dsy1,dv,ds2) = fi(dsy, dv,ds .
(s 2) = filds Q)Eg [eu;<sl>+u;(V)+u;<sz>+Ag<S><sl,v,52>+Az<L>(sl,v,52>]

m Problem solved: p* € P(u1, pv, p2)!

Julien Guyon
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Dispersion-constrained martingale optimal transport

Minimum entropy strong duality theorem

Theorem (G. 2020)
Let € My. Then

Dy = inf H(p,p) = supVpa(u) =: Py

HEP (p1,1v 12) ueU
where v = (u1,uv,u2, As, Ar) and
Ua(u) := B [ur (81)] + E [uv (V)] + E?[ua(S2)]
_InEP | et Sy (V) Fua(S2)+A5(51,V)(S2=S1)+AL (51,V) (L(52) -V?)

Moreover, when P(u1, uv, p2) # 0, the infimum is attained. This is in
particular the case when the above quantity is finite.

Julien Guyon (@© 2021 Bloomberg Finance L.P. All rights reserved.
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Dispersion-constrained martingale optimal transport

Build a model in P(u1, pv, p2)

euyl‘(sl)ﬁ»u)‘k, (U)+u; (52)+A;(S) (s1 ,v,sg)«l»AZ(L) (s1,v,82)

*(ds1,dv,ds2) = ji(ds1, dv, dsa .
i )=l )]Ea [eu;(51>+u;f,<V>+u;(52>+A§(S)(sl,v,s2>+A’;fL>(sl,v,SQ)]

m U is invariant by translation of w1, uv, and usa: for any constant ¢ € R,
Ws(ur + ¢, uv,u2, Ag, Ar) = Vps(ur, uv, uz, Ag, Ar) (and similarly with
uy and uz); ¢ = cash position = We will always work with a normalized
version of u* € U s.t.

EP [t S0+up Dtus+ai P sivsorai®esivisd | _ g (09)

m By duality, the initial, difficult problem of minimizing over
€ P(u1, v, p2) (constrained) has been reduced to the simpler
problem of maximizing the strictly concave function ¥; over v € U

(unconstramed) If it exists, the optimum u™ cancels the gradient of Wj:
vy vy vy vy E g
dui(s1) 3uv(v) T Buz(sa) BAS(SL”) BAL(SMJ)

Julien Guyon ) 2021 Bloomberg Finance L.P. All rights reserved.
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Dispersion-constrained martingale optimal transport

Equations for u* = (uj, uj,, u3, A§, A}

Tty =0t Vs1>0, ui(s1) = Pi(s1;uv,u2, As,Ar)
%:o: Vv 20, uv(v) = ®v(viui,uz, As,Ar)

oty =0 Vs2>0, uz(s2) o (s2;u1,uv,As, Ar)
%:0: Vs1 >0, Vv > 0, 0 = Pag(si,v;As(s1,v), Ar(s1,v))
0

%:0: Vs1 >0, Vv > 0, = P, (s1,v;As(s1,v), AL (s1,v))

m We could have simply postulated a model of the form

eU1(61)+uv(v)+u2(32)+Afgs)(Slﬁv,82)+A(LL) (s1,v,s2)

wu(ds1,dv,ds2) = pi(ds1,dv, dsz)

o [eul(sl>+uv<V>+uz<sz>+A<ss>(sl,v,s2>+A‘L“<sl,v,s2>} '

m Then the 5 conditions defining P(u1, pv, p2) translate into the 5 above
equations.

m The system of equations is solved using Sinkhorn’s algorithm.

m If the algorithm diverges, then P; = 400, so D = +o0, i.e.,
P(pa, v, p2) N{p € Mi|p < i} = (. In practice, when j has full
support, this is a sign that there likely exists a joint SPX/VIX arbitrage.

Julien Guyon © 2021 Bloomberg Finance L.P. Al rights reserved.
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Dispersion-constrained martingale optimal transport

Sinkhorn's algorithm

m Sinkhorn's algorithm (1967) was first used in the context of optimal
transport by Cuturi (2013).

m In our context: fixed point method that iterates computions of
one-dimensional gradients to approximate the optimizer ™.

m Start from initial guess v(®) = (ugo),ugf),ugo),Ag)), Ag))), recursively
define w1V knowing u(™ by

Vs1 > 0, u(fﬂ)(sl
n+1
Yo > 0, ug, )(v

= ‘1>1(s1;u§/n),u§"),A(S"), A(L"))

= <I>V(U;u§n+1),uén),Agn),A5:n))

Vsa > 0, uS" M (s2) = Pa(so;ul™T, WY A AM)

Vs1 >0, Vv > 0, 0 = Pag (sl,v;uénﬂ),A<5"+1>(81,v),A<L")(sl,v))
Vs1 >0, Vv >0, 0 = @a, (81,U;ué"+1)7A(S"H)(sthAg”rl)(sl,v))
until convergence.

m Each of the above 5 lines corresponds to a Bregman projection in the
space of measures.

Julien Guyon © 2021 Bloomberg Finance L.P. Al rights reserved.
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Dispersion-constrained martingale optimal transport

Sinkhorn's algorithm

m Sinkhorn's algorithm (1967) was first used in the context of optimal
transport by Cuturi (2013).

m In our context: fixed point method that iterates computions of
one-dimensional gradients to approximate the optimizer ™.

m Start from initial guess v(®) = (ugo),ugf),ugo),Ag)), Ag))), recursively
define w1V knowing u(™ by

Vs1 >0, u"(s1) = By(sa; ug/n),ué"), A(S"), A(L"))
Yu > 0, 7L$L+l)('z) = Dy (v u§"+1>,uén), Agn), Agn))
Vsa > 0, ugnﬂ)(sQ) = Dy(s9; uﬁ"“), u%}LH), Ag”, A(Ln>)
Vs1 >0, Vv > 0, 0 = Pag (sl,v;uénﬂ),A<5"+1>(81,v),A<L")(sl,v))
0

Vs1 >0, Vo >0, = Oa,(st,v3u" ALY (s1,0), AT (s1,0))

)
)

until convergence.

m Each of the above 5 lines corresponds to a Bregman projection in the
space of measures.
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Dispersion-constrained martingale optimal transport

Sinkhorn's algorithm

m Sinkhorn's algorithm (1967) was first used in the context of optimal
transport by Cuturi (2013).

m In our context: fixed point method that iterates computions of
one-dimensional gradients to approximate the optimizer ™.

m Start from initial guess v(®) = (ugo),ugf),ugo),Ag)), Ag))), recursively

define w1V knowing u(™ by

Vs1 >0, ugn+1)(51) = @1(51;u$),uén),Aén),A(Ln))

Vo0, ) = @v(eul™ug ALY ADY)

Vsa > 0, ul" M (sy) = <I>2(52;u§"+1),u§}1+1),Ag">, A(L">)
Vs1 > 0, Yo > 0, 0 = ®aq (sl,v;uénﬂ),A<5"+1>(81,v),A<L")(sl,v))
Vs1 >0, Yo > 0, 0 = &, (sl,v;ué"+1)7A(S"H)(sthAg”rl)(sl,v))
until convergence.

m Each of the above 5 lines corresponds to a Bregman projection in the
space of measures.
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Dispersion-constrained martingale optimal transport

Sinkhorn's algorithm

m Sinkhorn's algorithm (1967) was first used in the context of optimal
transport by Cuturi (2013).

m In our context: fixed point method that iterates computions of
one-dimensional gradients to approximate the optimizer ™.

m Start from initial guess v(®) = (ugo),ugf),ugo),Ag)), Ag))), recursively
define w1V knowing u(™ by

Vs1 >0, u"(s1) = By(sa; ug/n),ué"), A(S"), A(L"))
You > 0, u%}”l)(v = Dy(v; ugnﬂ),ué"), A(S”), AE"))
Vsg > 0, u" ™ (s2) = Ba(sa;ul™tY, u%}LH), Ag”, A(Ln>)
Vs1 >0, Vv > 0, 0 = Pag (sl,v;uénﬂ),AgL+])(sl7v),A<L")(sl,v))
0

Vs1 >0, Vo >0, = Oa,(st,v3u" ALY (s1,0), AT (s1,0))

)
)

until convergence.

m Each of the above 5 lines corresponds to a Bregman projection in the
space of measures.
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Dispersion-constrained martingale optimal transport

Sinkhorn's algorithm

m Sinkhorn's algorithm (1967) was first used in the context of optimal
transport by Cuturi (2013).

m In our context: fixed point method that iterates computions of
one-dimensional gradients to approximate the optimizer ™.

m Start from initial guess v(®) = (ugo),ugf),ugo),Ag)), Ag))), recursively
define w1V knowing u(™ by

Vs1 >0, u"(s1) = By(sa; ug/n),ué"), A(S"), A(L"))
You > 0, u%}”l)(v = Dy(v; ugnﬂ),ué"), A(S”), AE"))
Vsg > 0, u" ™ (s2) = Ba(sa;ul™tY, u%}LH), Ag”, A(Ln>)
Vs1 >0, Vv > 0, 0 = Pag (sl,v;uénﬂ),A<5"+1>(81,v),A<L")(sl,v))
0

Vs1 > 07 Vv > Oa = (bAL (Slav;ugrprl)?Agn+1)(817U)7A<I;VL+1>('9171)))

)
)

until convergence.

m Each of the above 5 lines corresponds to a Bregman projection in the
space of measures.

Julien Guyon © 2021 Bloomberg Finance L.P. Al rights reserved.

The Joint S&P 500/VIX Smile Calibration Puzzle Solved



Dispersion-constrained martingale optimal transport

Sinkhorn's algorithm

m Sinkhorn's algorithm (1967) was first used in the context of optimal
transport by Cuturi (2013).

m In our context: fixed point method that iterates computions of
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Vsg > 0, u" ™ (s2) = Ba(sa;ul™tY, u%}LH), Ag”, A(Ln>)
Vs1 >0, Vv > 0, 0 = Pag (sl,v;uénﬂ),A<5"+1>(81,v),A<L")(sl,v))
0

Vs1 >0, Vo >0, = Oa,(st,v3u" ALY (s1,0), AT (s1,0))

)
)

until convergence.

m Each of the above 5 lines corresponds to a Bregman projection in the
space of measures.
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Dispersion-constrained martingale optimal transport

Sinkhorn's algorithm

m Sinkhorn's algorithm (1967) was first used in the context of optimal
transport by Cuturi (2013).

m In our context: fixed point method that iterates computions of
one-dimensional gradients to approximate the optimizer u™.

m Start from initial guess ©(®) = (ugo),ug),uéo),Ag)), Ag))), recursively
define w1V knowing u(™ by

¥s1>0,  uf"V(s1) = @i(syuluf?, AL, AY)
vo>0, ulVw) = ®y(u™ Wl AM A
¥s2 >0, ulV(s2) = @a(sasu{™V uY AL, ATY)
Vs1 >0, Yo >0, 0 = Pag (sl,v;u;"+1),A(S"H)(sl,v),A%n)(shv))
Vs1 >0, Yv >0, 0 = @, (sl,v;uén"'l),A(Sn+l)(51,v),Ainﬂ)(sl,v))

m Each of the above five lines corresponds to a Bregman projection in the
space of measures.

m If the algorithm diverges, then P; = 400, so D = 400, i.e.,
Put, pv, p2) N {p € Mi|p < i} = 0. In practice, when fi has full
support, this is a sign that there likely exists a joint SPX/VIX arbitrage.

Julien Guyon © 2021 Bloomberg Finance L.P. Al rights reserved.
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Dispersion-constrained martingale optimal transport

Numerical experiments

All rights reserve
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Dispersion-constrained martingale optimal transport

Implementation details

m Choice of ji:

B S1 ~ p1 and V ~ py independent;
m Conditional on (S1,V), S2 lognormal with mean S; and variance V.

Under i, S2 % po.

m Instead of abstract payoffs w1, uv, u2, we work with market strikes and
market prices of vanilla options on S1, V, and Sa.

m Canceling the gradient of ¥; — system of equations solved using
Sinkhorn's algorithm.

m Enough accuracy is typically reached after =~ 100 iterations.

Julien Guyon © 2021 Bloomberg Finance L.P. All rights reserved.
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Dispersion-constrained martingale optimal transport
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Dispersion-constrained martingale optimal transport

Local VIX, calibration as of August 1, 2018, T1 =21 days

Joint density of (S1, V), calib as of August 1, 2018, 71 = 21 days
0.25
22

18.5
18.0
020 175

17.0
0.15
16.5

16.0
0.10

15.5

0.05 150

14.5

0.00 14.0
2650 2700 2750 2800 2850 2900 2950 2400 2500 2600 2700 2800 2900 30¢

Figure: Joint distribution of (S1, V) and local VIX function VIXjoc(s1)

VIXRo(S1) == E* [V?]S1]
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Dispersion-constrained martingale optimal transport

ust 1, 2018, 77 = 21 days

Distribution of S; given (S1, V), calib as of Aug 1, 2018, T; = 21 days

0.008 .
g

o5, Distribution of 7% + 1T, calib as of Aug 1, 2018, T, =21 days
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Figure: Conditional distribution of Sy given (s1,v) under p* for different vales of
(s1,v): s1 € {2571,2808,3000}, v € {10.10, 15.30, 23.20, 35.72} %, and distribution

of the normalized return R := % + %Vﬁ
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Dispersion-constrained martingale optimal transport

August 1, 201

B Function u1(s1) as of Aug 1, 2018, T1 = 21 days o5 Function uy(v) as of Aug 1, 2018, Ty = 21 days
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Dispersion-constrained martingale optimal transport

Smile of SPX as of August 1, 2018, Ty = 49 days
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Dispersion-constrained martingale optimal transport

December 24, 2018, T}

= 23 days: large VIX, Fy

Smile of SPX as of December 24, 2018, T, = 23 days

Smile of VIX as of December 24, 2018, T1 = 23 days
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December 24, 2018, 17 = 23 days
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MOT in continuous time:
Exact joint calibration via
VIX-constrained martingale
Schrodinger bridges

(G. 2020)

(@© 2021 Bloomberg Finance
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VIX-constrained martingale Schrédinger bridges

Martingale optimal transport approach in continuous time

m Same point of view as the discrete-time model: Pick a reference measure
Py <— a particular SV model:

ds:
Sy
da; = blar)dt + o(ar) (deE +V1- p2th°’l)

m We want to prove that P # () and build P € P, where

a, AW

P = {P < Po|S1 ~ p1,S2 ~ p2,/EP[L(S2/S1)|F1] ~ pv, S is a P-martingale}.
m No need to introduce a new r.v. for the VIX: VIX = |/EP[L(S2/S1)|F1].

m We look for P € P that minimizes the relative entropy w.r.t. Py:
D := inf H(P,Po)
PEP

m Inspired by Henry-Labordére 2019: From (Martingale) Schrédinger Bridges
to a New Class of Stochastic Volatility Models (calib to SPX smiles)

m Follows closely the construction of Schrodinger bridges

Julien Guyon © 2021 Bloomberg Finance L.P. Al rights reserved.
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VIX-constrained martingale Schrédinger bridges

Simple Schrodinger bridge (a la Follmer, Saint-Flour 1988)

dX; = dw?, Xo = xo
P = {P<<IP0‘X1NM1}
D = inf H(P,Pp)
PeP

= inf sup {H(IP,IP’O)+IE“1 [ul(Xl)]—EP[ul(Xl)]}
PEM1 yyeLt (1)

= sup inf {H(IP,IPO)+IE“1 [u1 (X1)] — B [ul(Xl)]}
u €L (ug) PEM1

Recall the remarkable fact about the inner infimum:

Jinf {H(P,Po) — B [un (X1)] } = — InEFo [ X0)]
1

AdP* eu1(X1)
and the infimum is reached at P* defined by o m.
0 ev

© 2021 Bloomberg Finance L.P. Al rights reserved.
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VIX-constrained martingale Schrédinger bridges

Simple Schrodinger bridge (a la Follmer, Saint-Flour 1988)

dX; = dw?, Xo = xo
P = {P<<IP0‘X1NM1}
D = inf H(P,Pp)
PeP

= inf sup {H(IP,IP’O)+IE“1 [ul(Xl)]—EP[ul(Xl)]}
PEM1 yyeLt (1)

= sup inf {H(P,IP’O)+IE“1 [ (X1)] — E° [ul(Xl)}}
uy€Lt(uy) PEM

Recall the remarkable fact about the inner infimum:

Jinf {H(P,Po) — B [un (X1)] } = — InEFo [ 0]
1

AdP* eu1(X1)
and the infimum is reached at P* defined by o m.
0 ev

© 2021 Bloomberg Finance L.P. Al rights reserved.
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VIX-constrained martingale Schrédinger bridges

Simple Schrodinger bridge (a la Follmer, Saint-Flour 1988)

o _ M1 _ Po | u1(X1) _.
D:= inf HP,Po) = sup {IE [ur(X1)] — InE [e ]}_.P

ui €LY (p1)
m Assume P < 400 and the sup is reached at uy. Then

dP* -
My, = — = ¢"1(%0)

(Z =1 by cash adjustment of uj)
m Let M; := EXO[ My, | F] = BP0 [T (XD|F,]. Then M; = U*(t, X;) where
aU" + %aiU* =0, U*(Ti,z)=e1®@.
m By Girsanov, Wy := W, — fot 0> InU” (s, Xs) ds is a P*-Brownian motion,
dXy = 8, U™ (t, X;) dt + dW; = 8, mEP[e"1 XV | X, = 2] x, dt + dW;

Brownian motion with drift, which is explicitly known.
In practice, u1(X1) is replaced by >, ax (X1 — K)+. The gradient of

E* |:Z ak (X1 — K)+:| — InEFo [eZKEKL QK(X17K)+]
Kek
is simply the vector of differences between model and market call prices.

Julien Guyon © 2021 Bloomberg Finance L.P. Al rights reserved.

The Joint S&P 500/VIX Smile Calibration Puzzle Solved



VIX-constrained martingale Schrédinger bridges

VIX-constrained martingale Schrodinger bridge

da = (b(ar)+(1— p*)o(ar)*dau’(t,Se,ar)) dt + o(ar) (det* ++1- deW:’l)

m Let P:=5SupP,, 4y u, {Zie{l,Q,V}(u“ u;) — u(0, So,ao)} where u is
solution to a nonlinear Hamilton-Jacobi-Bellman PDE:

uw(Ts,s,a;0%) = wa(s)+ 0" L(s),
B+ Lo + %(1 — o) @au)® = 0, te(Ty,T),
®(s,a) :=sup inf {uv(v) — 8N(L(s) +0°) + u(Tl,s,a;5L)},
v>06L€eR
u(Tlasva) = U1(8)+<I>(S,CL),
drut Lut S(1- p)o(@)@un)* = 0, te[0T)

m Assume P < 400 and (uj,uj,,u3) maximizes P — u*

Julien Guyon © 2021 Bloomberg Finance L.P. Al rights reserved.
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VIX-constrained martingale Schrédinger bridges

VIX-constrained martingale Schrodinger bridge

ds, «
?tt = at th
day = (blas)+(1 — p*)o(ar)®Oau” (t, Si,ar)) dt + o(ar) (det* ++/1-— deWt*’l)

m Optimal deltas:

Af = —0su’(t, Se,ar) — PZ(?)‘%“*(@ Sear); AT =6""(S1,a)
Tt

m The drift of (a:) under P* also reads as
" Ty X
bar) + (1 — p?)o(ar)2d InEO[evi SO/t AT (rSroar)dS,+2™(S1.a1) g, 0,1 ¢ € [0,T}],
" Ty \x L
b(at) + (1 _ p2)a(at)28a ln]EO[Euz(Sz)+ft 2A (r,Sr,ar)dSyr+6 L<él’a1>L(Sz>‘St7at]7 te [Tl,TQ].

m |t is path-dependent on [T1,7%] so as to match the market VIX smile.
m If P =400, then P = 0.

Julien Guyon © 2021 Bloomberg Finance L.P. Al rights reserved.
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VIX-constrained martingale Schrédinger bridges

Martingale optimal transport approach in continuous time

D = it H(E,Fo)
= HE P+ S (i wg)
]PEMl up €L (1), ug €Lt (ng), uveLl(uv) (Ay)F- adapted{ ie{1,2,v}
s T
P P 2 2
—E s s P L (22)|F AydS
[ul( 1) + ua( 2)+uv< [ <S1>‘ 1])+/0 t t]}
(relax)
= inf H(P, Pg) + (pg>ug)
PEMy uy, u2,uv,(At)V€]'_1 Aler { 0 1€{LZ2,V} o
T. s
-Ef [uusn + ug(S2) + uy (V) +/ 2 apds, + AL (L (—2) - vz)} }
0 S1
(dual)
= mf H(P,Pg) + > (ks ug)
ug, u27uv,(At)V€f1 ALe}‘ e { ietinvy
T S
-EP [U1(51) + uz(S2) + uy (V) +/ 2 Apdsy + AL (L (i> - Vz)} }
0 S1
= sup inf sup {0 Y (ngoup)

up,ug,uy,(80) VEFLALeF; “ie(i2,v}

.
0 w1 (S1)+ug(Sa)+uy (V)+[g 2 Apdsg+al (L(%)*VQ)
—InE e 1 }

sup sup inf sup sup
LUV (Ap)iero,1y] V€T AL eF; (At)iery Ty]

Julien Guyon 021 Bloomberg e L.P. All rights reserved
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VIX-constrained martingale Schrédinger bridges

Lagrange multipliers u

(relax)

(dual)

inf H(P,P
pep M- Fo)

inf {HEPO)+ 3 (i)
PEMY yienl(uy), ugeLl(;Lz) w eLl(um (A¢)F-adapted ie{1,2,V
1%

. ) s T
—i" [ul(51>+u2(52)+uv ( EF [L(*Zﬂfl]) Jr/ 2Atdst] }
s1 0

inf {Hm Po) + S0 (mghup)
PEMy wy, u2,uv,(At)V€f1 ALe ie{i,2,v}

T S
-Ef [uusn + ug(S2) + uy (V) +/0 2 apds, + AL (L (S—Z) - vz)} }
1

inf {H(L{” Po) + ST ()
uy, u27uv,(At)V€fl ALE}‘ pe ie{l,2,v}

T S
-EP [U1(51) + uz(S2) + uy (V) +/0 2 Apdsy + AL (L (f) - Vz)} }
1

sup inf  sup (g ug)
up,ug,uy (M) VEFL AL F, " icil,2,V})

T.
uy (81)+ua(Sa)+uy (V)+[fy 2 Apdsy+al (L(%) *VQ)
7lnE0 e 1 }

sup sup inf sup sup
ULU2UY (At ie0,1] VEF1 ALcr, (At) [Ty, To]

2021 Bloomberg
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VIX-constrained martingale Schrédinger bridges

Lagrange multipliers A;: martingality of S

(relax)

(dual)

The Joint S&P 500,

inf H(P,P
pep H - Fo)

inf H(P,Pg) + Z (kg ug)
PEMI i enl(puy),ugeLl(ug), HVGLI(#V) (Ag)F- adaPtEd{ i€{1,2,V}
. ) S )
—E" [ul(sl) + uz(S2) + uy ( EF [L (f)‘Fl]) +/0 2 At,dSz,] }
1
inf H(F, Bg) + (1 ug)
PEMY oy, u2,uv,(At)V€]'_1 Aler { 1€{11221V} o
P T2 L ) 2
—E u1(51)+u2(52)+uv(v)+/0 ApdSy + Al (L = —v }
1
mf H(P,Pg) + > (g, ug)
uy, u27uv,(At) Ve]'_l ALe}‘ Pe { ie{l,2,v}
P T L S2 2
—E u1(51)+u2(52)+uv(v)+/0 apasp+ Al (L(2) -V }
1

sup inf  sup (mirug)
up,ug,uy (M) VEFL AL F, " icil,2,V})

T.
uy (81)+ua(Sa)+uy (V)+[fy 2 Apdsy+al (L(%) *VQ)
7lnE0 e 1 }

sup sup inf sup sup
ULU2UY (At ie0,1] VEF1 ALcr, (At) [Ty, To]
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VIX-constrained martingale Schrédinger bridges

Relaxation

D = inf H(P,P
pep H - Fo)

= inf

bl {H(L“,ﬂ”o) + > (kg ug)

sup
TuyeLl(py)ugeLl (pg),uy €L (ny),(A¢)F-adapted ic{l,2,V}

5 Se T
-EP [ul(sl) +ug(S2) + uy ( o [L (iﬂfl]) +/ 2 Atdst:| }
Sq 0

(relax) ) .
2 inf sup int sup {H(IP’,JP’O) + ST (s ug)
PEMY uy ug,uy (M) VEFT AL cFy ie{l,2,V}
T So .
-Ef [uusn + ug(S2) + uy (V) +/0 2 apdsy + Ak (L (?) - vzﬂ }
S1
(dual) ) .
= sup inf sup inf {H(P,Py) + > [OT))
up,ug,uy (A) VEFL ALeF PEMl{ ie{1,2,V}
T. So
-EP [U1(51) + uz(S2) + uy (V) +/0 2 Apdsy + AL (L (;) - Vz)} }
1
= sup inf sup (pg, ug)
up,ug,uy (M) VEFL AL F, " icil,2,V})
T. S
o | w1(S1)+ua(S2)+uy (V)+[y 2 Apdsg+al (L(J) *VQ)
—InE e 1 }

sup sup inf sup sup
LUV (Ap)iero,1y] V€T AL eF; (At)iery Ty]
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VIX-constrained martingale Schrédinger bridges

Relaxation

= inf sup EF |uy(V)+A" (L 52y

VEFI ALcF, Si

Julien Guyon 021 Bloomberg e L.P. All rights reserved
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VIX-constrained martingale Schrédinger bridges

Relaxation

D = inf H(P,P
pep H - Fo)

= inf

bl {H(L“,ﬂ”o) + > (kg ug)

sup
TuyeLl(py)ugeLl (pg),uy €L (ny),(A¢)F-adapted ic{l,2,V}

5 Se T
-EP [ul(sl) +ug(S2) + uy ( o [L (iﬂfl]) +/ 2 Atdst:| }
Sq 0

(relax) ) .
2 inf sup int sup {H(IP’,JP’O) + ST (s ug)
PEMY uy ug,uy (M) VEFT AL cFy ie{l,2,V}
T So .
-Ef [uusn + ug(S2) + uy (V) +/0 2 apdsy + Ak (L (?) - vzﬂ }
S1
(dual) ) .
= sup inf sup inf {H(P,Py) + > [OT))
up,ug,uy (A) VEFL ALeF PEMl{ ie{1,2,V}
T. So
-EP [U1(51) + uz(S2) + uy (V) +/0 2 Apdsy + AL (L (;) - Vz)} }
1
= sup inf sup (pg, ug)
up,ug,uy (M) VEFL AL F, " icil,2,V})
T. S
o | w1(S1)+ua(S2)+uy (V)+[y 2 Apdsg+al (L(J) *VQ)
—InE e 1 }

sup sup inf sup sup
LUV (Ap)iero,1y] V€T AL eF; (At)iery Ty]
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Duality

(relax)

(dual)

VIX-constrained martingale Schrédinger bridges

inf H(P,P
pep H - Fo)

]P]f/‘\/l {H(P’“DO)JF Z (kg ug)
EM1uyert (uy),ug €L (na), uveLl(uv) (A¢) F-adapted ic{l,2,V}

,, s T
—5" [ul(sl) + uz(S2) + uy ( EF [L (*2>‘F1]) +/ 2 Atdst] }
R o

inf sup {H(IP’ Po) + ST ()
PeEMiuy, u2,uv’(At)VE]:1 ALer ie{1,2,v}

T S
-EP [uusn + ug(S2) + uy (V) +/0 2 apdsy + AL (L (S—Z) - vz)} }
1

int {H®Po)+ > (nghu)
up,ug, uV’(At)Ve‘Fl ALE]-‘ FeMy ic{l,2,v}

T S
—EP [U1(51) + uz(S2) + uy (V) +/0 2 Apdsy + AL (L (f) - Vz)} }
1

sup inf sup (s> us)
up,ug,uy (M) VEFL AL F, " icil,2,V})

.
0 w1 (S1)+ug(Sa)+uy (V)+[g 2 Apdsg+al (L(%)*VQ)
—InE e 1 }

sup sup inf sup sup
LUV (Ap)iero,1y] V€T AL eF; (At)iery Ty]
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VIX-constrained martingale Schrédinger bridges

Remarkable fact: inner inf is explicit

D = inf H(P,P
pep H(E Fo)
- inf {H(L“,ﬂ”o)Jr ST ()
PEMI uy el (), uge L1 (1a), uveLl(uv) (Ay)F-adapted ie{1,2,v}
R s T,
—5" [ul(sl) + uz(S2) + uy ( EF [L (f)‘Fl]) +/0 2 Atdst] }
1
(relax)
= inf H(P,Po) + ST (miug)
PEML iy ugiuy (Ag) v Aler { ie{1,2,v}
T s
-Ef [uusn + ug(S2) + uy (V) +/0 2 apds, + AL (L (S—Z) - vz)} }
1
(dual) i
& it {HER) S (g
ug, u27uv,(At)V€f1 ALe}‘ PeM { ie{1,2,v}
D T S
—gf [u,1 (S1) + ua(S2) + uy (V) + /0 2 agdsy + Ak (L (f) - ‘,2)}}
‘ 1
= sup inf sup { Y (ngoup)

up,uz,uy,(80) VEFLALeF; “ie(i2,v}

T S -
50 ul(sl>+u2(52>+uv(v)Ho2A,,ds,,+AL<L(‘€)7v2) }
—nEY |e

sup sup inf sup sup
ULU2UY (Ap)iero,1y] V€T AL eF; (At)iery Y]
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VIX-constrained martingale Schrédinger bridges

Optimizing first over [T7,Ts], then Ty, then [Ty, T1], then Ty

D = Bt H(E,Fo)
= HE P+ S (wgswg)
]PEMl up €L (1), ug €Lt (ng), uveLl(uv) (Ay)F- adapted{ ie{1,2,v}
s T
P P 2 2
—E s s P L (22)|F AydS
[ul( 1) + ua( 2)+uv< [ <S1>‘ 1])+/0 t t]}
(relax)
= inf H(P, Pg) + (pg>ug)
PEMy uy, u2,uv,(At)V€]'_1 Aler { 0 1€{LZ2,V} o
T. s
-Ef [uusn + ug(S2) + uy (V) +/ 2 apds, + AL (L (—2) - vz)} }
0 S1
(dual)
= mf H(P,Pg) + > (ks ug)
ug, u27uv,(At)V€f1 ALe}‘ e { ietinvy
T S
-EP [U1(51) + uz(S2) + uy (V) +/ 2 Apdsy + AL (L (i> - Vz)} }
0 S1
= sup inf sup {0 Y (ngoup)

up,ug,uy,(80) VEFLALeF; “ie(i2,v}

.
0 w1 (S1)+ug(Sa)+uy (V)+[g 2 Apdsg+al (L(%)*VQ)
—InE e 1 }

()

Julien Guyon 021 Bloomberg e L.P. All rights reserved
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VIX-constrained martingale Schrédinger bridges

Optimize over [T1, T5]

m The inner infpe aq, is reached at P* defined by (renorm. Z =1 by cash
adjustment of vanilla payoffs)

art U1 (1) +uz(S2)Fuy (V)+[g 2 Aedsi+ar (L(52)-v?)

dPo

sup sup inf sup sup { ST (wgug)
LU (Ao, ry] Y ST ALeF (At) ey 1y] ie{1,2,V}

—1In

0 [6“1(51)+“2(52)+'MV(V)+f(?2 AtdStJrAL(L(SZ )*Vr‘))} )

S (mihug)

sup sup inf sup
VLUV (Ae)sejo,ry) VETL AL eFy Ciefi 2 v)

n inf 1
(At)te[Ty,Ty)

50 { ”1(51)+u2(32)+uv(V)+f(;T2 apdsi+al (L(82 )7‘,2)} )

Julien Guyon 2021 Bloomberg Fi e L.P. All rights reserved.
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VIX-constrained martingale Schrédinger bridges

Optimize over [T, T5]: stochastic control

inf su

s Sup sup vk P (pgsug)
1:U2, V(At)te[O,Tl] 1AL€}-1 ie{1,2,V}

—In inf

3 o - T , So -
Lo [ DS fuy (D412 Apas, Al (2(52)-v?) )
(At)re|Ty, Ty

DPP
(DEP) sup sup inf sup (s ug)
Uy, ug,uy (At)te[U,Tl]VE}_lALEF1 ief{ia, v}

T L 2
—1nE® [Eu1(51>+“\/<V>+Jo P agds;—at(L(s)+V )U<T1A51v“1:AL’} 1

m Stochastic control:

T
Ut,Se,as AY) = inf B Luzwzw  ArdS AT L(S:)
(Ar)re(t,Ty)

St,at,AL] , te[T,Ta).

Julien Guyon 2021 Bloomberg Fi e L.P. All rights reserved.
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VIX-constrained martingale Schrédinger bridges

Optimize over [T, T5]: stochastic control

m U is solution to the HJB PDE

oU + LU + igf{%AQCLQSZU + Aas (asdsU + pa(a)aaU)} 0,
U(Tz,s,a;6") = eu2() 67 Lis)

m Optimal delta:

A* . 85U(t,5t,at) +p2(t‘?t)6aU(t,St,at)
L U(ta St? a‘t) ’

m U satisfies

 (as0sU + po(a)d,U)? _

L5y _ ua(s)+elL(s)
2 0, U(Tz,s8,a;07) =e .

HU+LU
m u:= In U satisfies

Avu~+ Lo+ %(1 — pH)o(a)?(Dau)® =0, w(Ta, s,a;6") = uz(s) + 6 L(s).

Julien Guyon © 2021 Bloomberg Finance L.P. Al rights reserved.
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VIX-constrained martingale Schrédinger bridges

Optimize at T7: simply pathwise

D = sup sup Vin;__ sup { Z (pi, ui)
U2y (Aiepo,ry) VST ARER S iefia vy

—InE° |:eu1(51)+uV(V)+f(;Tl AtdSt—AL(L(Sl)+V2)+u(T1,Sl,a1;AL)} }
Since S1, a1, and fOTl A.dS; are Fi-measurable,

T L AL
inf sup {*hlEO eu1(51)+uv(V)+f01 AdSy—AY(L(S1)+V?2)+u(Ty,S1,a1;4%)
Ver AL er

_1In sup inf EO |:eU1(51)+UV(V)+f0Tl Atdst*AL(14(51)+V2)+U(T1-51JM;AL):|
ver, Aler

InE° |:eu1(5'1)+ijl ArdSi+® (S, ,al)]

®(s,a) :=sup inf {uy(v) — 6% (L(s)+ v?) + u(Ty, s, a; 5L)} .
v>0 6L eER
The optimal V and A are functions of (S1,a1): v*(S1,a1), 65(S1,a1).

Julien Guyon (© 2021 Bloomberg Fi e L.P. All rights reserved.
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VIX-constrained martingale Schrédinger bridges

Optimize over [Ty, T1]: same stochastic control

D = sup sup { > (pirwi) —InE° [e“l(sl)+f()Tl Atdst'*q’(sl’al)} }
w1u2:uV (At)ic(o.1]  se{1,2,V}

T
Tk { > (wisug) —In inf  E° [e“1<51>+folAtd5t+4>(51aa1>}}
]

uLu2uy e S vy (At)telo, Ty
= sup { Z (ui,ui)—an(O,So,ao)}

YLUUY R ey 2 V)

= sup Z (pi, ui) — (0, So,ao)} =P
YLUBUY R 1 2.V}

T
where U(t7 St, at) = inf(AT)re[t,Tl] E° [eul(Sl)Jrft 1A, dS-+®(S1,a1) St,at]
satisfies
2
U + LU — (a50.U + po(a)9U)" _ 0,t€[0,T1), U(Ti,s,a)=e" T
2U 7 7 K b b

and u := In U satisfies

dvu+ L + %(1 —pHo(a)?(Bau)® =0, t €[0,T1), w(Ti,s,a)=ui(s)+ B(s,a).

Julien Guyon © 2021 Bloomberg Finance L.P. Al rights reserved.
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VIX-constrained martingale Schrédinger bridges

Optimize over [Ty, T1]: same stochastic control

D = sup sup > (i, ui) — InE° [e“l(sl)+f()Tl Atdst'*q’(sl’al)} }
U1U2UY (Ao ] ie{1,2,V}

= sup { > (wiu)—Ininf R [eul(sl)HOTl Atdsﬁ@(Sl’al)}}
uLu2uy e S vy (At)iefo, 1]

- sup { 3 (M,ui)—an(QSo,a[))}

YLUUY R ey 2 V)

= sup Z (pi, ui) — (0, So,ao)} =P
YLUBUY R 1 2.V}

T
where U(t7 St, Clt) = inf(AT)r‘e[f,_T.l] E° {eul(sl)+]g L A,dS,+®(S1,a1) Sy, at}
satisfies
2
U + LU — (a50.U + po(a)9U)" _ 0,t€[0,T1), U(Ti,s,a)=e" T
2U ) ) ) ) )

and u := In U satisfies

dvu+ L + %(1 —pHo(a)?(Bau)® =0, t €[0,T1), w(Ti,s,a)=ui(s)+ B(s,a).

Julien Guyon © 2021 Bloomberg Finance L.P. Al rights reserved.
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VIX-constrained martingale Schrédinger bridges

Final dual representation

D = sup sup > (i, ui) — InE° [e“l(sl)+f()Tl Atdst'*q’(sl’al)} }
U1,U2UY (Ao ] ie{1,2,V}

= sw { Y (uuw)-In if E [eu1<sl>+f51Atdstwshan]}
uLu2,uy N Ay (At)tefo,1q]

= swp { S (uiw) — U0, S0,a0)}

YLUUY R e 2 V)

= sup Z (ui,ui)—u((),SO,ao)} = P
YLUBUY T 1 2.V}

T
where U(t7 St, at) = inf(AT)re[t,Tl] E° [eul(Sl)Jrft 1 A,dS,-+®(S1,a1) St,at]
satisfies
2
U + LU — (a50.U + po(a)9aU)” _ 0,t€[0,T1), U(Ti,s,a)=e" T
2U 7 7 K b b

and u := In U satisfies

dvu+ L + %(1 —pHo(a)?(Bau)® =0, t €[0,T1), w(Ti,s,a)=ui(s)+ B(s,a).

Julien Guyon © 2021 Bloomberg Finance L.P. Al rights reserved.
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VIX-constrained martingale Schrédinger bridges

Calibrated model = reference model with modified drift

m Assume P < +oo and (ul,uj,,u3) maximizes P. The probability P* that
minimizes H (P, Py) satisfies (Z = 1)

B _ s 0 a5 HHE) ) gy,
0

m Let M, := E°[Mr,|F;]. It is easy to check that M, = £(L); with
dL; = /1 — p?0(as)Bau”(t, S, ar) AW+

m Girsanov = (W*, W*) is a standard P*-Brownian motion, where

t
W =Wy, Wit =wit —/1— p2/ o(ar)0qu*(r, S, a.) dr.
0

m The model dynamics reads

dS *
S: = a¢ th
dar = (blar) + (1 — p*)o(ar)?dau”(t, St,ar)) dt + o(ar) (ﬂth* ++/1-— p2th*’L)

Julien Guyon

The Joint S&P 500/VIX Smile Calibration Puzzle Solved
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VIX-constrained martingale Schrédinger bridges

Recap: VIX-constrained martingale Schrodinger bridge

da = (b(ar)+(1— p*)o(ar)*dau’(t,Se,ar)) dt + o(ar) (det* ++1- deW:’l)

m Let P:=5SupP,, 4y u, {Zie{l,Q,V}(u“ u;) — u(0, So,ao)} where u is
solution to a nonlinear Hamilton-Jacobi-Bellman PDE:

uw(Ts,s,a;0%) = wa(s)+ 0" L(s),
B+ Lo + %(1 — o) @au)® = 0, te(Ty,T),
®(s,a) :=sup inf {uv(v) — 8N(L(s) +0°) + u(Tl,s,a;5L)},
v>06L€eR
u(Tlasva) = U1(8)+<I>(S,CL),
drut Lut S(1- p)o(@)@un)* = 0, te[0T)

m Assume P < 400 and (uj,uj,,u3) maximizes P — u*

Julien Guyon © 2021 Bloomberg Finance L.P. Al rights reserved.
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VIX-constrained martingale Schrédinger bridges

Recap: VIX-constrained martingale Schrodinger bridge

ds, «
?tt = at th
day = (blas)+(1 — p*)o(ar)®Oau” (t, Si,ar)) dt + o(ar) (det* ++/1-— deWt*’l)

m Optimal deltas:

Af = —0su’(t, Se,ar) — PZ(?)‘%“*(@ Sear); AT =6""(S1,a)
Tt

m The drift of (a:) under P* also reads as
" Ty X
bar) + (1 — p?)o(ar)2d InEO[evi SO/t AT (rSroar)dS,+2™(S1.a1) g, 0,1 ¢ € [0,T}],
" Ty \x L
b(at) + (1 _ p2)a(at)28a ln]EO[Euz(Sz)+ft 2A (r,Sr,ar)dSyr+6 L<él’a1>L(Sz>‘St7at]7 te [Tl,TQ].

m |t is path-dependent on [T1,7%] so as to match the market VIX smile.
m If P =400, then P = 0.

Julien Guyon © 2021 Bloomberg Finance L.P. Al rights reserved.
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VIX-constrained martingale Schrédinger bridges

d(l/f

“SPX" implied volatilities, Ty = 0.17 "VIX* implied volatilties, T = 0.17
« "Market" (1-5ABR, v=0.4)
20 — Calibrated model (A-SABR, v.= 0.5, modified SV drift) 2
Reference model (1-5ABR, v=0.5)
H H
g g
§ Gao
2215 g « "Market! (A-5ABR, v =0.4)
£ £ —— Calibrated mode! (-SABR, v=0.5, modified SV drift)
] £y Reference model (A-5ABR, v =0.5)
S0 3 —— "Market’ VIX future = 20.06
H H VIX future in calibrated model = 20.06
K] FEd — VIX future in reference model
3 5
gs E
34
200

125 150 175 200 225 250 275 300 325
Strikes

“SPX" implied volatilities, T, = 0.25

“Market" (A-SABR, v =0.4)
2175] — Calibrated model (A-SABR, v=0.5, modified SV drift)
Reference model (1-5ABR, v=0.5)

2150

2125

21.00

2075

Implied volatilities in percent

2025

20.00
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VIX-constrained martingale Schrédinger bridges

day = —k(ay —m) dt + vay dZ;. ‘Market’: v =04, Py : v =0.5

N L _
Optimal 6'(s, a), T =0.17 VIX v(s, a) in calibrated model, Ty = 0.17

Julien G 2021 Bloomberg e L.P. All rights reserved
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VIX-constrained martingale Schrédinger bridges

day = —k(ay —m) dt + vay dZ;. ‘Marke 04, Py:v=0.5

Optimal payoft uy Optimal payolt uy
05 0.00
00 -0z
-050
-0s _
3 s
] 3-075
10
100
15
128
—20 -1.50
% o8 1o 1z 14 15 18 oo o 2 o3 o o5 o5
s v

Optimal payoff u,

2021 Bloomberg e L.P. All rights reserved
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VIX-constrained martingale Schrédinger bridges

day = —k(ay —m) dt + vay dZ,

k=15, ay=m=0.2, p=-0.7

“SPX" implied volatilties, T, =0.17 "VIX" implied volatilities, Ty = 0.17
“Market" (A-SABR, v=12)

Calibrated model (A-SABR, v=1.0, modified SV drift)
Reference model (A-SABR, v=1.0) 100

H H
£ 300 g
: : 95 * "Market" (A-SABR, v=12)
s £ — Calibrated model (-SABR, v = 1.0, modified SV drift)
H £ Reference model (A-SABR, v =1.0)
g0 ) —— "Market" VIX future
2,5 3 VIX future i calibrated model
3 3 —— VIX future in reference model
5200 3 8 = =
E E

s

a0
150

100 125 150 175 200 225
Strikes

“SPX" implied volatilities, T, = 0.25

©  "Market" (\-SABR, v=12)
—— Calibrated mode! (A-SABR, v = 1.0, modified SV drift)
Reference model (A-SABR, v =1.0)

Implied volatilities in percent

07 08 09 10
Strikes
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VIX-constrained martingale Schrédinger bridges

day = —k(ay —m) dt + va; dZ;. ‘Market: v =12, Py:v =1

Optimal 6'(s, a), T1 = 0.17 VIX v(s, a) in calibrated model, T; =0.17

2021 Bloomberg Fin All rights reserve
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day = —k(ay —m) dt + vay dZ,

VIX-constrained martingale Schrédinger bridges

‘Market: v=1.2,Pp:v=1

Optimal payoff uy

N Optimal payoff uy

Optimal payoff u;

()

Julien G
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VIX-constrained martingale Schrédinger bridges

day = —k(ay —m) dt + vay dZ,
p=—0.3

*5PX" implied volatilties, T, = 0.17 "VIX implied volatilties, 7
+ “Market” (LSABR, =0, p= —05) o

30 —— Calibrated model (A-SABR, v=1.0, p= - 0.3, modified SV drift)
. Reference model (A-SABR, v=1.0, p= ~0.3) Lo
g
g ge2 o "Market" (1-SABR, v=09)
£26 s —— Calibrated model (A-SABR, = 0.3, modified SV drift)
3 ] Reference model (-SABR, -
] geo — "Market" VIX future
Ehad K VIX future in calibrated model
S S — VX future inreference model
g2 2 <
a e
E B

2

e /
1
07 08

30 o “Market” (1-SABR, v=09, p.
— Calibrated model (A-SABR, v ~0.3, modified SV drift)
Reference model (A-SABR, v=1.0, p= ~0.3)
28
g
g
826

Implied volat

09
Strikes
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VIX-constrained martingale Schrédinger bridges

Other approaches

m Guo-Loeper-Obtoj-Wang (2020): joint calibration via semimartingale
optimal transport
m More general cost function: volatilities and correlations are allowed to be
modified from reference model
m Model (S, Y?) instead of (S¢, at) where Y is the price at ¢ of the integrated
variance over [t, T»]
m Terminal constraint on the semimartingale Y: Y7, =0
m Cont-Kokholm (2013): Bergomi-like model with simultaneous jumps on
SPX and VIX.
m Best fit
m An approximation of the VIX in the model is used
m Gatheral-Jusselin-Rosenbaum (2020): quadratic rough Heston volatility
model.
m Best fit
m VIX smile well calibrated, not enough ATM SPX skew

m Fouque-Saporito (2018): Heston Stochastic Vol-of-Vol Model

m Pacati-Pompa-Reno (2018): displacement of multi-factor affine models
with jumps (Heston++)

m Papanicolaou-Sircar (2014), Goutte-Amine-Pham (2017):
regime-switching Heston model (with or without jumps)

Julien Guyon © 2021 Bloomberg Finance L.P. Al rights reserved.
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Inversion of cvx ordering

Inversion of convex ordering
in the VIX market
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Inversion of cvx ordering
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Inversion of convex ordering in the VIX market
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‘We investigate i for the existence of a i model on the S&P 500 index (SPX) that
jointly calibrates to a full surface of SPX implied volatilities and to the VIX smiles. We present a
novel approach based on the SPX smile calibration condition E[07|S;] = o7 (t.5). In the limiting
case of instantaneous VIX, a novel application of martingale transport to finance shows that such
model exists if and only if, for each time 7, the local variance Uf,(r, S;) is smaller than the instanta-
neous variance o> in convex order. The real case of a 30-day VIX is more involved, as averaging
over 30 days and projecting onto a filtration can undo convex ordering.

We show that in usual market conditions, and for reasonable smile extrapolations, the distribution
of VIX? in the market local volatility model is larger than the market-implied distribution of VIX3.
in convex order for short maturities 7, and that the two distributions are not rankable in convex order
for intermediate maturities. In particular, a necessary condition for continuous models to jointly cal-
ibrate to the SPX and VIX markets is the inversion of convex ordering property: the fact that, even
though associated local variances are smaller than instantaneous variances in convex order, the VIX

Julien © 2021 Bloomberg Finance L.P. Al rights reserved
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Inversion of cvx ordering

Continuous model on SPX calibrated to SPX options

@ IO'tth, 50:33’. (4.1)
St
m Corresponding local volatility function oioc: o2, (t, Si) := E[o?|Sq].

m Corresponding local volatility model:

dSlOC

1 - Uloc(ty SiOC) th7 SIOC =
Stoc

u From Gyéngy (1986): vt >0, sl g,

m Using Dupire (1994), we conclude that Model (4.1) is calibrated to the full
SPX smile if and only if o1oc = o1, (market local volatility computed using
Dupire's formula).

m Market local volatility model:

v
dSu = on(t, Sy) dWy, Sy =x.

Julien Guyon © 2021 Bloomberg Finance L.P. Al rights reserved.
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Inversion of cvx ordering

m By definition, the (idealized) VIX at time T > 0 is the implied volatility of
a 30 day log-contract on the SPX index starting at I". For continuous
models (4.1), this translates into

9 1 T+t 9 1 T+t 9
VIX7 =E | - oi dt|Fr| =~ E [o7|Fr] dt.
T T

m Since E[o2.(t, Si°°)|Fr] = Elof.(t, 51°¢)|S%°], VIXioe,r satisfies

2 1 T 2 loc loc 1 T 2 loc loc
VIXloc,T = — ]E[O-loc(tv St )|ST ] dt = ]E — Uloc(tv St ) dt ST .
TJr TJT
m Similarly,
2 L[ vy | ol [ R 1 1
VIXIV,T = — / ]E[O'lv(t, Stv)lsg] dt = E |:* / Olv (t, Stv) dt Sq\*]:| .
TJr TJr

© 2021 Bloomberg Finance L.P. Al rights reserved.
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Inversion of cvx ordering

Reminder on convex order

(The distributions of ) two random variables X and Y are said to be in
convex order if and only if, for any convex function f, E[f(X)] < E[f(Y)].

m Denoted by X <. Y.

m Both distributions have same mean, but distribution of Y is more “spread”
than that of X.

m In financial terms: X and Y have the same forward value, but calls
(puts) on Y are more expensive than calls (puts) on X (dimension 1).

Julien Guyon > 2021 Bloomberg Finance L.P. All rights reserved.
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Inversion of cvx ordering

The case of instantaneous VIX: 7 — 0

Assume SV model is calibrated to the SPX smile: E[o7|S:] = of (¢, St).
m As observed by Dupire (2005), by conditional Jensen, of, (¢, ;) <. 0%, i.e.,

mkt local var; <. instVIXf.

m Conversely, if mkt local var, <. instVIX?, there exists a jointly calibrating
SPX/instVIX model (G., 2017).

— Convex order condition is necessary and sufficient for instVIX.

m Proof uses a new type of application of martingale transport to
finance: martingality constraint applies to (mkt local var;, instVIX?) at a
single date, instead of (Si, S2).

Julien Guyon © 2021 Bloomberg Finance L.P. Al rights reserved.
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The real VIX: 7 = 30 days

m In reality, squared VIX are not instantaneous variances but the fair strikes
of 30-day realized variances.

m Let us look at market data (August 1, 2018). We compare the market
distributions of

1 T+T
VIX}, r:=E {f / o (t,84) dt

TJr

SITV}

and

2 I
VIkath <<—> E |:;/ O¢ dt’fT])

T
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T = 21 days

Distribution of VIX$ as of Aug 01, 2018, T=21 days
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200 VIX? convex order as of Aug 01, 2018, T=21 days
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T = 21 days

Implied volatilities of VIX+ as of Aug 01, 2018, T=21 days
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Density of VIX2 in SPX LV model as of Aug 01, 2018, T=21 days
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200 VIX? convex order as of Aug 01, 2018, T=77 days
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T = 77 days

Implied volatilities of VIX+ as of Aug 01, 2018, T=77 days
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Inversion of convex ordering

m Inversion of convex ordering: the fact that, for small T,
VIXZ,. 1 >c VIX7 despite the fact that for all ¢, of, (¢, S:) <. o7.
m A necessary condition for continuous models to jointly calibrate to the
SPX and VIX markets.
m In the paper, we numerically show that when the spot-vol correlation is
large enough in absolute value,
(a) traditional SV models with large mean reversion, and
(b) rough volatility models with small Hurst exponent

satisfy the inversion of convex ordering property, and more generally can
reproduce the market term-structure of convex ordering of the local and
stochastic squared VIX.

m Not a sufficient condition though.

m Actually we have proved that inversion of convex ordering can be
produced by a continuous SV model.

® In such models, for small T', VIX},. » >. VIX% so (z — /Z concave)
E[VIX7] > E [VIXie.r] :

Local volatility does NOT maximize the price of VIX futures.

Julien Guyon © 2021 Bloomberg Finance L.P. Al rights reserved.
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SIAM J. Financial Math. 11(1):SC1-SC13, 2020 (with B. Acciaio)

SIAM J. EINANCIAL MATH (© 2020 Society for Industrial and Applied Mathematics
. No. 1, pp. SC1-5C13

Short Communication: Inversion of Convex Ordering: Local Volatility Does Not
Maximize the Price of VIX Futures*

Beatrice Acciaiol and Julien Guyon®

Abstract. Tt has often been stated that, within the class of continuous stochastic volatility models calibrated
to vanillas, the price of a VIX future is maximized by the Dupire local volatility model. In this
article we prove that this statement is incorrect: we build a continuous stochastic volatility model
in which a VIX future is strictly more expensive than in its associated local volatility model. More
generally, in our model, strictly convex payoffs on a squared VIX are strictly cheaper than in the
associated local volatility model. This corresponds to an inversion of convex ordering between local
and stochastic variances, when moving from instantaneous variances to squared VIX, as convex
payoffs on instantaneous variances are always cheaper in the local volatility model. We thus prove
that this inversion of convex ordering, which is observed in the S&P 500 market for short VIX
maturities, can be produced by a continuous stochastic volatility model. We also prove that the
model can be extended so that, as suggested by market data, the convex ordering is preserved for
long maturities.

Key words. VIX, VIX futures, stochastic volatility, local volatility, convex order, inversion of convex ordering
AMS subject classifications. 91G20, 91G80, 60H30

DOI. 10.1137/19M129303X

1. Introduction. For simplicity, let us assume zero interest rates, repos, and dividends.
Let F; denote the market information available up to time ¢. We consider continuous stochastic
volatility models on the S&P 500 index (SPX) of the form
Julien Guyon (© 2021 Bloomberg Finance L.P. All rights reserved.
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Inversion of cvx ordering

The joint S&P 500/Vix smile calibration

puzzle solved

Since Vix options started trading in 2006, many researchers have tried to build a model that jointly and exactly calibrates to the prices of
Standard & Poor’s 500 options, Vix futures and Vix options. In this article, Julien Guyon solves this long-standing puzzle by casting it as a
discrete-time dispersion-constrained martingale transport problem, which he solves in a non-parametric way using Sinkhorn’s algorithm

olatility indexes, such as the Vix index, do not just serve as market-
implied indicators of volatility. Futures and options on these
i indexes are also widely used as risk management tools to hedge the
volatility exposure of options portfolios. The existence of a liquid market for
these futures and options has led to the need for models that jointly calibrate
to the prices of options on the underlying asset and the prices of volatility
derivatives. Without such models, financial institutions could possibly arbi-
trage each other: even market-making desks within the same institution could
do so, eg, the Vix desk could arbitrage the S&P 500 (SPX) desk. By using
models that fail to correctly incorporate the prices of the hedging instru-
ments, such as SPX options, Vix futures and Vix options, exotic desks may
misprice options, especially (but not only) those with payoffs that involve
both the underlying and its volatility index.

For this reason, since Vix options began trading in 2006, many researchers
and practitioners have tried to build a model that jointly and exactly cali-
brates to the prices of SPX futures, SPX options, Vix futures and Vix options.
“This is known to be a very challenging problem, especially for shore matu-
rities. In particular, the very large negative skew of short-term SPX options,

The Joint S&P 500/VIX Smile Calibration Puzzle Solved

and Vix smiles: that the distribution of the Dupire market local variance be
smaller than the distribution of the (instantaneous) Vix squared in the convex
order, at all times. He also reported that for short maturities the distribution
of the true Vix squared in the marker local volatility model is actually larger
than the market-implied distribution of the true Vix squared in the convex
order. Guyon showed numerically that when the (typically negative) spot-vol
correlation is large enough in absolute value, both (a) traditional stochastic
volatility models with large mean reversion and (b) rough volatility models
with asmall Hurst exponent can reproduce this inversion of convex ordering.
Acciaio, & Guyon (2020) provide a mathematical proof that the inversion
of convex ordering can be produced by continuous models. However, the
inversion of convex ordering is only a necessary condition for the joint SPX/
Vix calibration of continuous models; it is not sufficient.

Since it looks to be very difficult to jointly calibrate the SPX and Vix
smiles with continuous models, many authors have incorporated jumps in
the dynamics of the SPX: see references in Guyon (2019a). Jumps offer
extra degrees of freedom to partly decouple the ATM SPX skew and the

© 2021 Bloomberg Finance L.P. All rights reserved.
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Equations for u* = (uj, uj,, u3,

ols=0: Vs1>0,  wi(s) = Pi(si;uv,uz,As,Ar)
fo‘l;?v):(): Vv >0, uy(v) = P@v(viui,uz, As,Ar)

vy

Fuglgy =0 ¢ Vsa > 0, ua(s2 Do (s2;ur,uv,As,Ar)

)
%:0: Vs1 >0, Vv >0, 0 = Pag(si,v;A5(s1,v),Ar(s1,v))
0

%5/117):0: Vs1 > 0, Vo > 0, = Pa,(s1,v;As(s1,v), AL (s1,v))
®i(sp5uy,Ag,Ar) = Inpg(sy) —In (/lf‘(Sl’ dv, d52)€uv(UHW(QHA‘(SS)(SIYU,SZHAS‘L)(SLU,Q))
3y (viug, Ag,Ar) = Inpy(v) —In (/ﬁ(dSL,UYd52)€“1(51)+u2(52>+AgS)(Sl,v,52)+A2L)(Sl,v,sQ))
Po(sgsuy,uy,Ag,Ar) = Inpg(sg) —In (/ﬁ(dslwdv,sg)e“'l(sl)+“V(")+AES‘S)(Sl””52)+A<LL)("1>“*S2)>
Pag(s1,vsug,85,8L) = /ﬁ(sl,v, dsg)(sg — sﬂeuZ(WHéS(sQ*sl)ML (L(%)ﬂg)
Tap (s1.viug, 65.8L) = /lﬁ(sl,v,ds2)<L (%) 71)2) 6”2(52>+5S(52*51>+5L(L(%)*”z)A
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Implementation details

Practically, we consider market strikes K := (K1, v, K2) and market prices
(Ck,C¥,C%) of vanilla options on S1, V, and Sz, and we build the model

B * L AO% g 4 A0 v (s K
pre(dsy, dv, ds2) = fi(dsy, dv, dsg)e® T2 S1TAV vHlrer, ok (1K)

L
eZKeK:V al (v— K) 4+ kek, a% (52*K)++A*( )(51,v752)+A’£( )(s1,,52)
where 0* := (c*, ALY, AV, o', aV, 0, A%, A}) maximizes

Tpx(0) = c+ASSo+AVFy + Y aCi+ y axCi+ Y akCi
Keky Keky KeKa

_RE |t AYSIFAY VA, akc(S1-K) 1+ 5k, ak (V=K) 4 +5x, a%(<s2—K)++A<SS><.~>+A<L”<~.>]

over the set © of portfollos 9 = (c, A57Av,a a",a% Ag,Ar) such that
c,AS,A(\)/ €R, a' e R*1, ¢V e R*V, ¢? € R*?, and
As, A : Rsg X R>¢9 — R are measurable functions of (s1,v).
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Implementation details

m This corresponds to solving the entropy minimization problem

Pix:= inf H ) = U () =: Dy
poc = dnf (1, 1) sup .k (0) i,k

where P(K) denotes the set of probability measures p on
R0 X R>0 X Rsq such that

EH[Sl}:S(% EH[V]:FV7 VKEKh E* [(Sl_K)+]:CI1(7
VK € Ky, E*[(V — K){] =C)¥, VK €Ka, E*[(S2 — K).] = Ck,
E* [S2]51,V] = 81, E* {L @2)

1

Sl,v] =V

m One can directly check that model ux is an arbitrage-free model that
jointly calibrates the prices of SPX futures, options, VIX future, and VIX
options. Indeed, if Uy x reaches its maximum at 6, then 6" is solution to

Pk (9) = 0:

© 2021 Bloomberg Finance L.P. Al rights reserved.
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Implementation details

Vo) :=c+A%So+AY Fy + Z apClk + Z apCY + Z axC%
KeK, KeKy KekKo

_gR {ecw%slw%wzm 0k (S1-K) 4+, o¥ (V=K) 4 + 5k, a%(<srf<)++AgS><...>+A<LL)<...>]

OWak _ . waldoc] Nk o owa|o duk]
9c =0:E |:7dﬂ =1 BA% =0:E _Slidﬂ =50

airgc =0:E" [(V—Kﬁ%} =Ck aa%%f =0:E" :(32—K)+d5§] -2
aAaf(ifv) =0: Ff {(52 —Sl)d:§ S1 :sl,vzv} =0, Vs1>0,0>0
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SLV calibrated to SPX: VIX smile (Aug 1, 2018)

m All continuous models on SPX that are calibrated to full SPX smile are of

the form:
dSt at
— = ————010c(t, St) dW;.
S = VEms oW

m They are stochastic local volatility (SLV) models

@ = atf(t, St) th

St
with stochastic volatility (SV) (a:) and leverage function
OTloc (t7 St)

VE[a?[S:]

L(t, St) =
m In those models (7 := 30 days)
1 TH+T a2
VIX; = = E | o oine(t
T / [E[af\st]alw( aSt)

TJr

.FT:| dt.

m Optimize SV parameters to fit VIX options.
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Motivation Dispersion-constrained martingale optimal transport VIX-constrained martingale Schrédinger bridges Inversion of cvx ordering

SLV calibrated to SPX: VIX smile, T' = 21 days (Aug 1, 2018)

VIX Smiles

— Model
= Market

ed Volatility

=
=

2
Strikes
SLV model, SV = skewed 2-factor Bergomi model
SV params optimized to fit VIX smile
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