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e Pointer Machine: Disallows random access, only applies when we need to report
a large list. A Navigation bottleneck, free information/computation

Cell-probe: Can't go beyond €2(logn) static query time; Information bottleneck,
free computation

Semi-group: Limits what DS can store and do. Only for weighted counting,
weights from a semi-group, i.e., no subtractions

Group: Limits what DS can store and do. Allows subtractions but we only know

how to do dynamic lower bounds
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Introduction

e No general, unconditional framework (we can't even prove a n“’(1) lower bound for 3-SAT)

e Conditional: Conjecture Problem A is hard, then use reductions

e Pointer Machine: Disallows random access, only applies when we need to report
a large list. A Navigation bottleneck, free information/computation

e Cell-probe: Can't go beyond (2(logn) static query time; Information bottleneck,
free computation

e Semi-group: Limits what DS can store and do. Only for weighted counting,
weights from a semi-group, i.e., no subtractions

e Group: Limits what DS can store and do. Allows subtractions but we only know
how to do dynamic lower bounds

Must avoid icebergs!
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The Pointer Machine Model
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Range Reporting

Range Reporting:
e A general class of Computational Geometric problems
e Input: A set of n objects, e.g., points, given by coordinates.
— In 2D we have (z;,1;), 1 <i<n
e \We want to build a Data Structure:
— Process the data using some preprocessing time, P(n)
— Store the process data using S(n) units of storage, i.e., space
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— In 2D we have (z;,1;), 1 <i<n
e \We want to build a Data Structure:
— Process the data using some preprocessing time, P(n)
— Store the process data using S(n) units of storage, i.e., space

The Goal:
e Answer queries
e A query is a geometric region or object.
— Triangle
— Circle
— Point

e Output: List of all the input objects that intersect the query object
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Range Reporting:
e A general class of Computational Geometric problems
e Input: A set of n objects, e.g., points, given by coordinates.
— In 2D we have (z;,1;), 1 <i<n
e \We want to build a Data Structure:
— Process the data using some preprocessing time, P(n)
— Store the process data using S(n) units of storage, i.e., space

The Goal:

e Answer queries
e A query is a geometric region or object.

— Triangle
— Circle
— Point

e Output: List of all the input objects that intersect the query object
e k: Output size

Peyman Afshani DS LB 5/19 /\I



A 2D Range Reporting Example

e Input: n points in 2D
e Query: A triangle A o .
e Qutput: List of £ points inside A o
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e Input: n points in 2D
e Query: A triangle A o .
e Qutput: List of £ points inside A o

e We want to spend O(n) space o
o Query time?

e Answer: O(y/n + k)
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A 2D Range Reporting Example

Input: n points in 2D
Query: A triangle A
Output: List of k£ points inside A

We want to spend O(n) space
Query time?

Answer: O(y/n + k)

e Some people invented crazy
techniques: cutting lemma,
partition theorem, partition
trees, etc.
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o Query time?

e Answer: O(y/n + k)
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Assume we have a data structure:

1. Works on any input of n points

2. Uses O(n) space
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A 2D Range Reporting Example

e Input: n points in 2D
e Query: A triangle A o .
e Qutput: List of £ points inside A o

e We want to spend O(n) space o
o Query time?

e Answer: O(y/n + k)

e Some people invented crazy
techniques: cutting lemma,
partition theorem, partition
trees, etc.

e This is optimall!
This is a claim that holds for any

Assume we have a data structure: o
data structure that satisfies 1-41!!

1. Works on any input of n points

2. Uses O(n) space

3. Finds all the points inside any triangle
4. Query time is O(Q(n) + k) — Q(n) = Q(/n)

How do we prove it?
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Data Structure Lower Bounds

Theorem we want to prove

Assume we have a data structure:

1. Given any input of n points in 2D,

2. stores them using O(n) space, s.t., it

3. finds all the points inside any given query triangle, using
4. query time of O(Q(n) + k).

Then, we must have Q(n) = Q(y/n)
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Theorem we want to prove

Assume we have a data structure:

1. Given any input of n points in 2D,

2. stores them using O(n) space, s.t., it

3. finds all the points inside any given query triangle, using
4. query time of O(Q(n) + k).

Then, we must have Q(n) = Q(y/n)

|

Theorem we want to prove

It is impossible to have a data structure that:

1. Given any input of n points in 2D,

2. stores them using O(n) space, s.t., it

3. finds all the points inside any given query triangle, using

4. query time of o(+/n) + O(k).
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Data Structure Lower

Theorem we want to prove

Assume we have a data structure:

1. Given any input of n points in 2D,

2. stores them using O(n) space, s.t., it

3. finds all the points inside any given query triangle, using
4. query time of O(Q(n) + k).

Then, we must have Q(n) = Q(y/n)

|

Theorem we want to prove Impossibility result!
It is impossible to have a data structure that:

1. Given any input of n points in 2D,

2. stores them using O(n) space, s.t., it

3. finds all the points inside any given query triangle, using

4. query time of o(+/n) + O(k).
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The Model of Computation: A Pointer Machine

Assume, the input is a set P of n items (e.g., points)

DS:

Storage is a collection of cells

A cell stores one item

A cell points to two other cells

There is a special node called the root
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The Model of Computation: A Pointer Machine

Don't care how long it takes to build this!

# of cells is the space usage (space complexity)
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The Model of Computation: A Pointer Machine

Don't care how long it takes to build this!

12
# of cells is the space usage (space complexity) 11
: 8
Given a query ¢, assume we need to report 9 "
P, CP:
4
6
2
5
5 1 14 13
3
-

°i\

!__/_| 11

15
12
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The Model of Computation: A Pointer Machine

Don't care how long it takes to build this!

12

# of cells is the space usage (space complexity) 11

Given a query ¢, assume we need to report
P, CP:

10

o Vx ¢ P,: We must visit a cell that

stores x 1
e Only through pointer navigation 3
e # of pointer navigations = query tim 7

!__/_| 11

15
12

°i\
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The Model of Computation: A Pointer Machine

Don't care how long it takes to build this!

12
# of cells is the space usage (space complexity) 11
: 8
Given a query ¢, assume we need to report 9 !
P, CP: 2
4
6
2
o Vx ¢ P,: We must visit a cell that >
stores x n
e Only through pointer navigation > - 3 =
e # of pointer navigations = query tim 7
8 /
: : - e L
e Computation is free! - l
e Information is free! 12
13 9
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The Model of Computation: A Pointer Machine

Don't care how long it takes to build this!

# of cells is the space usage (space complexity)

Given a query ¢, assume we need to report
P, CP:

o Vx ¢ P,: We must visit a cell that
stores x

e Only through pointer navigation

e # of pointer navigations = query tim

We want to report {1,2,4,8}
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The Model of Computation: A Pointer Machine

Don't care how long it takes to build this!

12
# of cells is the space usage (space complexity) 11
: 8
Given a query ¢, assume we need to report 9 "
P, CP:
4
6
2
o Vx ¢ P,: We must visit a cell that >
stores x 1
e Only through pointer navigation > - 3 =
e # of pointer navigations = query tim 7
8
e 8 11
12
13 9
We want to report {1,2,4,8}
2
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The Model of Computation: A Pointer Machine

Don't care how long it takes to build this!

12
# of cells is the space usage (space complexity) 11
: 8
Given a query ¢, assume we need to report 9 "
P, CP:
4
6
2
o Vx € P,;: We must visit a cell that 5
stores x 1
e Only thr.ough poi.nter. navigation | > - 3 =
e # of pointer navigations = query tim 7
8
e 8 11
12
13 9
We want to report {1,2,4,8}
2

We used 11 pointers = query time at
least 11
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The Model of Computation: A Pointer Machine

BALANCED BINARY TREE
Space: O(n)

Query: O(klogn)

I Ln
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The Model of Computation: A Pointer Machine

BALANCED BINARY TREE
Space: O(n)

Query: O(klogn)

I Ln

e Query time must be Q(n) + O(k) (or Q(n) + o(klogn))
e PM can simulate RAM w/ extra O(logn) factor
— LB in PM with Q(n) + O(klogn) = Q(n)/logn + O(k) LB in RAM
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A Framework Theorem

Unit square in 2D
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A Framework Theorem

Unit square in 2D
Problem:
e Input: n points
e Goal: A data structure
e Query: A region inside the unit square
e Output: All the points inside the region

query slab
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A Framework Theorem

Unit square in 2D

Problem:

e Input: n points

e Goal: A data structure

e Query: A region inside the unit square
e Output: All the points inside the region

Geometric Range Reporting: GRR

query slab
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A Framework Theorem

Unit square in 2D

query slab

Framework Theorem:

Problem:

Input: n points

Goal: A data structure

Query: A region inside the unit square
Output: All the points inside the region

Geometric Range Reporting: GRR

(i) Assume we have a data structure that solves our GRR:

1. Given any input of n points

2. stores them using S(n) space, s.t., it

3. answers any query in O(Q(n) + k) time.
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A Framework Theorem

Unit square in 2D

Problem:

e Input: n points

e Goal: A data structure

e Query: A region inside the unit square
e Output: All the points inside the region

Geometric Range Reporting: GRR

query slab

Framework Theorem:
(i) Assume we have a data structure that solves our GRR:

1. Given any input of n points
2. stores them using S(n) space, s.t., it

3. answers any query in O(Q(n) + k) time.

Assume we can build:
e 7 points
® M query regions, 1,...,T m
e (Cond. I) Every r; contains Q(Q(n)) points
e (Cond. Il) Any a queries contain at most (3 points
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A Framework Theorem

Unit square in 2D

Problem:

e Input: n points

e Goal: A data structure

e Query: A region inside the unit square
e Output: All the points inside the region

Geometric Range Reporting: GRR

query slab

Framework Theorem:
(i) Assume we have a data structure that solves our GRR:

1. Given any input of n points
2. stores them using S(n) space, s.t., it

3. answers any query in O(Q(n) + k) time.

Assume we can build: Z |7“z|
® 1. points S(n) = o 20(8)
® M query regions, 1,...,T m
e (Cond. I) Every r; contains Q(Q(n)) points
e (Cond. Il) Any a queries contain at most (3 points
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A Discrete Geometry View

e Input: n points o o
e Query: lines
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A Discrete Geometry View

e Input: n points ® 6 ¢ 6 6 © o0 o
Build: o o ° °
e 1 points

. o o o o

e (a lot of) m query regions, 71,...,7py,
e (Cond. I) Every r; contains 2(Q)(n)) points o o ¢ o o
e (Cond. Il) Any a queries contain at most 3 PY ® © 0 o
points. c 6 06 o o
S(n) =9 2114 ®© © 06 0 0 o

a20(8)

® © 0o 06 0 0 o
® 6 0o 0 0 0 o
® 6 6 6 o o o
® © ¢ 0 0 0 0 o
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A Discrete Geometry View

e Input: n points o o
e Query: lines

o o

e o
Build: o o o

e 7 points
e (a lot of) m query regions, 71,...,7py, ¢ o ¢ o
e (Cond. I) Every r; contains Q(Q(n)) points ® o e o o
e (Cond. Il) Any a queries contain at most ° ® o o o
points. S c 6 o o o
Ty

S(n) = (a20(5)> ® © o 0 0 o
e Every line is Q(n)-rich ¢ 0 60000
e No K, 3 in incidence graph ®© ¢ 06 0 0o 0 o
e Lower bound: S(n) > i of;;g:g)ences ® ¢ 06 0 0 o0 o
® ¢ 06 06 0 0 0 o
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A Discrete Geometry View

e Input: n points e o
e Query: lines

Build:

e 7 points

e (a lot of) m query regions, 71,...,7py,

e (Cond. I) Every r; contains Q(Q(n)) points
e (Cond. Il) Any a queries contain at most 3

points.
_ o 2]
S(n) = (a20(5)

e Every line is Q(n)-rich
e No K, 3 in incidence graph

e Lower bound: S(n) > i Of(j;\gig)ences

Well-known construction:

©
=
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A Discrete Geometry View

e Input: n points e o
e Query: lines

Build:

e 7 points

e (a lot of) m query regions, 71,...,7py,

e (Cond. I) Every r; contains Q(Q(n)) points
e (Cond. Il) Any a queries contain at most 3

points.
o 2T
S(n) = <a20(5)

e Every line is Q(n)-rich
e No K, 3 in incidence graph

e Lower bound: S(n) > i Ofozggig)ences

Well-known construction:

Slopes of 1,2,3,..., QQTzn)
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A Discrete Geometry View

e Input: n points
e Query: lines
Build:
e 7 points
e (a lot of) m query regions, 71,...,7py,

e (Cond. I) Every r; contains Q(Q(n)) points
e (Cond. Il) Any a queries contain at most 3

points.

S(n) =0 (ggﬁlﬂ

e Every line is Q(n)-rich
e No K, 3 in incidence graph

e Lower bound: S(n) > i Ofozggig)ences

Well-known construction:

Slopes of 1,2,3,..., QQLW

() (ﬁ) values for Y-intersepts
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A Discrete Geometry View

e Input: n points ® ©6 o o o/0 o
Build: o o o o/ eo
e 7 points
. e o o /o °
e (a lot of) m query regions, 71,...,7py,
e (Cond. I) Every r; contains 2(Q)(n)) points ¢ & o/ o ® o
e (Cond. Il) Any a queries contain at most 3 o o o o °
points. . . S o o o o o o
(n) = 20 (B) e ® e o o
Q(n
e Every line is Q(n)-rich " ¢ ¢ o 00
e No K, 3 in incidence graph ¢ o o o
e Lower bound: S(n) > i Of;;g:g)ences ¢ ¢ ¢ & o o
® © 0 0 0 0 o
Well-known construction:
S| £1,2,3 " No K @n)
OPES O 182 2 () I = Qg—fm space lower bound
Q (ﬁ) values for Y-intersepts Optimal
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A Discrete Geometry View

e Input: n points e o ® © o o

e Query: lines
Build:
e 7 points
e (a lot of) m query regions, 71,...,7py,
e (Cond. I) Every r; contains Q(Q(n)) points
e (Cond. Il) Any a queries contain at most 3

points.
_ o 2]
S(n) = (a20(5)

e Every line is Q(n)-rich
e No K, 3 in incidence graph

e Lower bound: S(n) > i Of(j;\gig)ences

Afshani, Cheng, SOSA’23: ¢

2

Q) > (d55)
For S(n) = O(n) = Q(n) = Q(n'~1/%)
(only tight LB for d > 2)
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Semialgebraic Range Reporting

Input:
e 1 points in RY.
e Store in a DS

e Given a range R ®
— list them.
®
1-1/d - ®
n space, n query time (low space)
n? space, log? ! n query time (fast query)
[
®
®
®
®
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Semialgebraic Range Reporting

Input:
e 1 points in RY.
e Store in a DS

e Given a range R ®
— list them.
o
n space, n' =4 query time (low space) °
n? space, log? ! n query time (fast query)
S(n) = 2t .+ :
 Q%n)
o
o
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Semialgebraic Range Reporting

Input:
e 7 points in
e Store in a DS

e Given a range R ®
— list them.
®
1-160) - ®
n space, n query time (low space)
r@space, log®~! n query time (fast query)
[
@ ®
— _H ®
5(n) =
®
®

Peyman Afshani DS LB 11/19 /v



Semialgebraic Range Reporting
nput: d degrees of
| opT;E points in freedgom ‘/\

e Store in a DS
e Given a range R
— list them.

n space, nt~ & query time (low space)

r@space, log®~! n query time (fast query)

S(n) =
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Semialgebraic

Input:

e 1 points in RY.

e Store in a DS

e Given a range R
— list them.
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Semialgebraic Range Reporting

Input:
e 1 points in RY.
e Store in a DS
e Given a range R ®
— list them. ®

nd d-dimensional
_— 7 dd f
S(n) = gigy e .
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Semialgebraic Range Reporting

Input:

e 1 points in RY.

e Store in a DS

e Given a range R ®
— list them.

nd d-dimensional
_— 7 dd f
S(n) = gigy e .

Find all (Zlfz,yz> S.t.,
(i — a)% + (s — b)* < 1 S
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Semialgebraic

Input:

e 1 points in RY.

e Store in a DS

e Given a range R
— list them.

nd d-dimensional
*SQH)::'@EGJ ecion <

Find all (Zlfz,yz> S.t.,
(z; —a)® + (y; —(b)? <7?
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Semialgebraic Range Reporting

Input:

e 1 points in RY.

e Store in a DS

e Given a range R
— list them.

nd d-dimensional
S(n) = gy iy

Find all (Zlfz,yz> S.t.,
(z; —a)® + (y; — b)* <12
x? — 2ax; + a* 4+ yi — 2by; + b* < r?

2 — 2ax; + a® + —2by; + b* < r?

zi < 2ax; + 2by; + r? —a® — b?

Point (z;, vy, 2% + y?) below halfspace
H(a,b,r): Z <2aX + 2bY + 1% — a?
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Semialgebraic Range Reporting

Input:

e 1 points in RY.

e Store in a DS

e Given a range R
— list them.

nd d-dimensional
S(n) = O,

— —n3 2De rees O
S(n) = 03 (n) et V\Q
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Semialgebraic Range Reporting

Input:

e 1 points in RY.
e Store in a DS

e Given a range R

— list them.
L nd d—dLm reenessi oonal
S(n) T Qd<n) grededgom f6/\/
— —n3 2De rees o
S(n) T QS(n) ?r:edgom f‘/\

n space, n' /3 = n2/3 query time (low space)

n3 space, log® n query time (fast query)
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Semialgebraic Range Reporting

Input:

e 1 points in RY.
e Store in a DS
e Given a range R

— list them.
nd

S(n) = iy
,n3

S(n) = G5y

d-dimensional
d degrees of
freedom 6/\

2D
3 degrees of@/\

freedom

n space, nl=1/2 = nde query time (low space)

n3 space, log® n query time (fast query)

The polynomial

Method
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Semialgebraic Range Reporting

Input:
e 1 points in RY.
e Store in a DS

e Given a range R ®
— list them. O
o
L nd d- demreeness oonal
S(n) T Qd(n) gededgom f6/\/ o
S(n) — 73?’—3 3degreesof6/\ ®
freedom
am .
o
n space, nt=1/2 = nde query time (low space)
n3 space, log® n query time (fast query) ® ® ®
The polynomial ° ° ¢
Method
3
n
Current knowledge: Q5( < 5(n) < Fim
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Semialgebraic Range Reporting

Input:
e 1 points in RY.
e Store in a DS

e Given a range R ®
— list them. °
@
o nd d- demreeness oonal
S(n) T Qd(’n,) ?ededgom f‘/\ °
3
p— —n egrees O
S(n) T Q3(n) ?:edgom f‘/\ . .
@
n space, nt=1/2 = nde query time (low space)
@space, log2 n query time (fast query) ® o O
tight .
The polynomial o o
Method

Current knowledge: Q5(
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Fast Query Lower Bound: The General Approach

Unit square in 2D

3

Peyman Afshani

Input: n uniformly random points

Query: —w < P(x,y) < w

List the points in the query

Goal: Lower bound for polylog Q(n); Q(n)
Space Lower Bound: roughly n”

[: Degrees of freedom

DS LB

O(1)
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Fast Query Lower Bound: The General Approach

Unit square in 2D

3

Peyman Afshani

Input: n uniformly random points

Query: —w < P(x,y) < w

List the points in the query

Goal: Lower bound for polylog Q(n); Q(n) = O(1)
e Space Lower Bound: roughly n”

e [3: Degrees of freedom

How to:
e Create n” polynomials P;(z,y)
o Area of —w < P(x,y) < w is O(w)
° WA % —= O(1): Each region is “Q(n)-rich”
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Fast Query Lower Bound: The General Approach

Unit square in 2D
Input: n uniformly random points

Query: —w < P(x,y) < w

List the points in the query

Goal: Lower bound for polylog Q(n); Q(n) = O(1)
e Space Lower Bound: roughly n”

e [3: Degrees of freedom

3

How to:

Create n” polynomials P;(x,y)

Area of —w < P(z,y) < w is O(w)

w R % —= O(1): Each region is “Q(n)-rich”

L
L
[
® (main challenge) Intersection of two regions: < %
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Fast Query Lower Bound: The General Approach

Unit square in 2D

Input: n uniformly random points

Query: —w < P(x,y) < w

List the points in the query

Goal: Lower bound for polylog Q(n); Q(n) = O(1)
e Space Lower Bound: roughly n”

e [3: Degrees of freedom

How to:
e Create n” polynomials P;(z,y)
o Area of —w < P(x,y) < w is O(w)
o wa YN — O(1): Each region is “Q(n)-rich”
[

n
(main challenge) Intersection of two regions: < %
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Fast Query Lower Bound: The General Approach

Unit square in 2D

Input: n uniformly random points

Query: —w < P(x,y) < w

List the points in the query

Goal: Lower bound for polylog Q(n); Q(n) = O(1)
e Space Lower Bound: roughly n”

e [3: Degrees of freedom

How to:

Create n” polynomials P;(x,y)

Area of —w < P(z,y) < w is O(w)

w R % —= O(1): Each region is “Q(n)-rich”
(main challenge) Intersection of two regions: < %

So far only one approach:

Create: Pi(z,y), P2(z,y),. .., Pu(z,y)
Min. distance between coefficients is large
Prove it implies (main challenge)
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The First Technique

Unit square in 2D

P(x,y): Y=0OX2+0X~2"14+. .  +0X+0

How to:
Create n=*! polynomials P;(x, )

— ) < P(x,y) < L
Each region is “Q(n)-rich”

° A
°
°
°

(main challenge) Intersection of two regions: < %
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The First Technique

Unit square in 2D

Pi(z,y): Y=0X2+0X>"1+... +0X+0

A
Distance QT(”) Is enough
to imply (main challenge)

Pi(x,y): Y=0X>+0X>"14+ .  +0X+0

How to:

e Create n®"! polynomials P;(z,y)
o —% < P(z,y) < %”)

e Each region is “Q(n)-rich”

A

® (main challenge) Intersection of two regions: < %
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The Second Technique

Unit square in 2D
P(z,y): Y =X2+0X2"1Y+.. +0XYV/+.. 40V +0X+0

How to: A
o Create n("a") polynomials P;(x,y)
o —% < P(z,y) < %

e Each region is “Q(n)-rich”
o

(main challenge) Intersection of two regions: < %
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The Second Technique

Unit square in 2D
Pi(z,y): Y =X240X2"1Y+. +0XYI+.. +0V+0OX+0

AQ
Distance < n(") and small magnitude

is enough to imply (main challenge)
Pi(x,y): YV =X2+0X2" 1Y+, +0XYIi+.. 40V +0X+0

How to:
(%) '
e Create n\ ¢ /) polynomials P;(x,y)
e Each region is “Q(n)-rich”
® (main challenge) Intersection of two regions: < %
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The Main Open Question

Unit square in 2D
P(z,y): 0=0X240X2"1Y+.. +0XYIi+. . +0V+0X+0

e In many problems, [I's CANNOT be independent.
e []is a polynomial of ay,...,as

e Some of them have to zero.

e Some of them have to constants

e Some of them depend on other coefficients

How to:
Create n” polynomials P;(z,v)

— ) < P(x,y) < L
Each region is “Q(n)-rich”

(main challenge) Intersection of two regions: < %
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The Main Open Question

Unit square in 2D
P(z,y): 0=0X240X2"1Y+.. +0XYIi+. . +0V+0X+0

e In many problems, [I's CANNOT be independent.
e []is a polynomial of ay,...,as

e Some of them have to zero.

e Some of them have to constants

e Some of them depend on other coefficients

How to:
o Create n” polynomials P;(x,y)

o —UP < Play) < 4P

e Each region is “Q(n)-rich”

® (main challenge) Intersection of two regions: < %

Hurdle:

Py(z,y)H(z,y) =0

PQ(CU: y)H(ZL’, y) =0

Have arbitrary large coefficient distance
Infinitely many zeroes in common
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The Third Technique

Unit square in 2D
P(z,y) : YG(X) = F(X)
G and F' “far from” sharing a root
YG(X)— F(X) is irreducible

How to:
Create n” polynomials P;(z,v)

— ) < P(x,y) < L
Each region is “Q(n)-rich”

(main challenge) Intersection of two regions: < %
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The Third Technique

Unit square in 2D
P(z,y) : YG(X) = F(X)
G and F' “far from” sharing a root
YG(X)— F(X) is irreducible

oly a
QP ZL (™) and small magnitude is enough to imply (main

Distance
challenge)

How to:
Create n” polynomials P;(z,v)

— ) < P(x,y) < L
Each region is “Q(n)-rich”

(main challenge) Intersection of two regions: < %
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The End?
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How to Main Challenge

Setup:
P(r,y) : YG(X) = F(X)
t = Resultant(F,G) > 0
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How to Main Challenge

Setup:
P(r,y) : YG(X) = F(X)
t = Resultant(F,G) > 0

3H(X),L(X): GH+ FL =1
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How to Main Challenge

Setup:
P(r,y) : YG(X) = F(X)
t = Resultant(F,G) > 0

3H(X),L(X): GH+ FL =1

Create lots of poly:
e A “grid” of side-length ¢ around P
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How to Main Challenge

Setup:
P(r,y) : YG(X) = F(X)
t = Resultant(F,G) > 0

3H(X),L(X): GH+ FL =1

Create lots of poly:
e A “grid” of side-length ¢ around P

e For each coeff. a of P:
— Foreach:1=0,..., an(n):
* Add 07 to a
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How to Main Challenge

Setup:
P(r,y) : YG(X) = F(X)
t = Resultant(F,G) > 0

3H(X),L(X): GH+ FL =1

Create lots of poly:
e A “grid” of side-length ¢ around P

e For each coeff. a of P:

— Foreach1=0,..., =&

Q)
x Add J7 to a
Get:
o M =n” polys, Pi,..., Py (ignoring poly Q(n) factors)
e Every two differ at by at least d in one coeff.
e Every P; in a small neighborhood of P (within radius nd)
e 0 sufficiently small constant
e Region: 0 < P;(x,y) < % = w
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How to Main Challenge

Setup:

Pz,y) : YG(X) = F(X)

t = Resultant(F,G) > 0
dH(X),L(X): GH+ FL =1
Consider P; and FPs:
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How to Main Challenge

Setup:

P(z,y) : YG(X) = F(X)

t = Resultant(F,G) > 0
dH(X),L(X): GH+ FL =1
Consider P; and FPs:

Imagine big overlap

Peyman Afshani DS LB 18/19 /\I



How to Main Challenge

Setup:

P(z,y) : YG(X) = F(X)

t = Resultant(F,G) > 0
dH(X),L(X): GH+ FL =1
Consider P; and FPs:

Imagine big overlap

Peyman Afshani DS LB 18/19 /\I



How to Main Challenge

Setup:

P(z,y) : YG(X) = F(X)

t = Resultant(F,G) > 0
dH(X),L(X): GH+ FL =1
Consider P; and FPs:

Imagine big overlap

Peyman Afshani DS LB 18/19 /\I



How to Main Challenge

Setup:

P(z,y) : YG(X) = F(X)

t = Resultant(F,G) > 0
dH(X),L(X): GH+ FL =1
Consider P; and FPs:

Imagine big overlap

P; and P, evaluate within [0, w] in a big interval I of length
at least #n)
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How to Main Challenge

Setup:

P(z,y) : YG(X) = F(X)

t = Resultant(F,G) > 0
dH(X),L(X): GH+ FL =1
Consider P; and FPs:

Imagine big overlap

P; and P, evaluate within [0, w] in a big interval I of length
at least #n)

Approach:
e Pick ¢ pointsin I on P;
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P(z,y) : YG(X) = F(X)

t = Resultant(F,G) > 0
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Imagine big overlap

P; and P, evaluate within [0, w] in a big interval I of length
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How to Main Challenge

Setup:

P(z,y) : YG(X) = F(X)

t = Resultant(F,G) > 0
dH(X),L(X): GH+ FL =1
Consider P; and FPs:

Imagine big overlap
Py and P, evaluate within [0, w] in a big interval I of length
1
at least o
Approach:
e Pick ¢ pointsin I on P;

V' Vector of monomials:
e all monomials except y X6
e X'fori=1,...,k so we get £ mono. in total

e Build an ¢ x ¢ matrix A:
— Row ¢ is the evaluation of V' on the i-th point
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How to Main Challenge

Setup:

P(z,y) : YG(X) = F(X)

t = Resultant(F,G) > 0
dH(X),L(X): GH+ FL =1
Consider P; and FPs:

Imagine big overlap
Py and P, evaluate within [0, w] in a big interval I of length
1
at least o
Approach:
e Pick ¢ pointsin I on P;

V' Vector of monomials:
e all monomials except y X6
e X'fori=1,...,k so we get £ mono. in total

e Build an ¢ x ¢ matrix A:
— Row ¢ is the evaluation of V' on the i-th point

Claim: |det(A)| > Resultant(F, G)|I|* — O(w)
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How to Main Challenge

Setup:

P(z,y) : YG(X) = F(X)

t = Resultant(F,G) > 0
dH(X),L(X): GH+ FL =1
Consider P; and FPs:

Imagine big overlap

Py and P, evaluate within [0, w] in a big interval I of length
1
at least o
Approach:
e Pick ¢ pointsin I on P;

V' Vector of monomials:
e all monomials except y X6
e X'fori=1,...,k so we get £ mono. in total

e Build an 7 x ¢ matrix A:

Tweak coeff of P, by smaller — Row ¢ is the evaluation of V' on the i-th point
than 0 to pass through the ¢ ] 02
points = contradiction Claim: |det(A)| > Resultant(F, G)|I|® — O(w)
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Thank you!



