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A general approach to hedging 

• Suppose that an investor has a security A (or portfolio of securities) and wishes 
     to determine the relation between the returns of security A and the returns 
     of a given asset B (not equal to A). 
 
• We consider a stochastic linear model for the returns of A and B.  
      The simplest model looks like 
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• Beta is the regression coefficient (with respect to the model used 
      for the joint returns) of the returns of A on the returns of B 
 
• Hedging with a linear model corresponds to taking an offsetting position 
      using the beta (regression coefficient). 



Regression of CL2 returns on CL1 
returns (2003-2010) 



Linear model applied to (CL1,CL3) 



Example: Long CL2, short CL1 
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Hedging option exposure against  
the underlying asset 

• Assume that you are long 1 call option on XYZ, with strike K, maturity T. 
      
• Assume that the dividend yield and interest rate are known.  

 
     -- compute the implied volatility       
 
 
 
 
 
 
 
 
 
• The exposure to the underlying asset is represented by the first derivative 
      with respect to price 
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Options are non-linear functions of the 
underlying asset 

S (underlying asset value 
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Delta for European Call (Black & Scholes)  
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Delta: European Call- Black-Scholes model 
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Delta For European Put (Black-Scholes) 
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Gamma – the change in Delta as the 
stock price moves 

• Options are non-linear financial instruments, in the sense that they 
     do not have a constant Delta with respect to the underlying instrument 
 
• The second derivative of the option value with respect to the underlying 
      price is called Gamma.  It represents the rate of change of Delta as the price 
      moves. In the European B-S model, we have  
 
 
 
 
 
 
 
• The Gammas of a call and put with the same parameters are identical. 
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Properties of Gamma 

• The option price is convex in S, so Gamma is positive for a  
      long options position 

 
• Gamma is mostly concentrated near the strike price, i.e. Gamma 
     is the largest for at-the-money options. OTM and ITM options have 
     less convexity 



Delta and Gamma for American Options 

• The derivatives can be computed by finite-differences (trinomial scheme) 
 

• If we assume that the arrays are labeled  C(-M to +M), S(-M to +M) 
     for the option price and the stock price respectively, then we have 
 
 
 
 
 
 
 
 
 
 
 
 
• These values are very close to the analytic expressions  for European-style  
      Greeks for ATM options 
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Example 
• A trader has a position in SPY stock and options on SPY expiring in June 2012. 
     He is long 10,000 SPY December 105 puts. He is also delta-neutral through  
      SPY stock. 
 
    SPY=$114.25 
    Bid price=$3.91, Ask price=$4.00  
    Implied Volatility=37.7% 
    Delta=-0.29371 
    Gamma= 0.02653 
 
    Option market value = 10,000*100*3.955=$3,955,000  
    SPY hedge= long 293,371 shares (MV= $ 33,517,337) 
     
• If SPY increases by 1 dollar, New Delta ~ -0.29371+0.02653= -0.26718  
     New theoretical hedge= long 267,180 shares 
     Difference = 26,530 shares 
     To be market-neutral, the trader would need to sell  26,530 shares at $115.25 
 
• If SPY decreases by 1 dollar,  in order to become delta-neutral, the trader  
      would need to buy 26,530 shares at  $113.25 



Gamma and hedged portfolios  
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Vega 
• Vega is the sensitivity of an option price to  changes in implied 
     volatility 
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Time-dependence 

• Option premia above par value decrease with time-to-maturity 
 
 
• Gamma increases with time to maturity (for ATM options) 

 
 
• Vega decreases with time-to-maturity (for ATM options) 

 
 

Short-term options are mostly sensitive to Gamma 
(frequent delta hedging needed to maintain market-neutrality)  
 
Long-term options are mostly sensitive to Vega 
(value is very sensitive to the implied volatility) 



Theta (time decay rate) 

• Theta is the derivative of the option value with respect to  
      time to maturity 
 
• To get intuition for Theta, assume that r and q are zero. Then, 
     by the Black Scholes equation 
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