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Abstract

It is well-known that leveraged exchange-traded funds (LETFs) don’t
reproduce the corresponding multiple of index returns over extended (quar-
terly or annual) investment horizons. In 2008, most leveraged ETFs un-
derperformed the corresponding static strategies. In this paper, we study
this phenomenon in detail. We give an exact formula linking the return of
a leveraged fund with the corresponding multiple of the return of the un-
leveraged fund and its realized variance. This formula is tested empirically
over quarterly horizons for 56 leveraged funds (44 double-leveraged, 12
triple-leveraged) using daily prices since January 2008 or since inception,
according to the fund considered. The results indicate excellent agree-
ment between the formula and the empirical data. The study also shows
that leveraged funds can be used to replicate the returns of the underlying
index, provided we use a dynamic rebalancing strategy. Empirically, we
find that rebalancing frequencies required to achieve this goal are mod-
erate, on the order of one week between rebalancings. Nevertheless, this
need for dynamic rebalancing leads to the conclusion that leveraged ETFs
as currently designed may be unsuitable for buy-and-hold investors.

1 Introduction

Leveraged ETFs (LETFs) are relative newcomers to the world of exchange-
traded funds1. A leveraged ETF tracks the value of an index, a basket of
stocks, or another ETF with the additional feature that it uses leverage. For
instance, the ProShares Ultra Financial ETF (UYG) offers double exposure to

1To our knowledge, the first issuer of leveraged ETFs was Rydex, in late 2006.
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the Dow Jones U.S. Financials index. To achieve this, the manager invests two
dollars in a basket of stocks tracking the index per each dollar of UYG’s net
asset value, borrowing an additional dollar. This is an example of a long LETF.
Short LETFs, such as the ProShares UltraShort Financial ETF (SKF), offer a
negative multiple of the return of the underlying ETF. In this case, the manager
sells short a basket of stocks tracking the Dow Jones U.S. Financials index (or
equivalent securities) to achieve a short exposure in the index of two dollars per
each dollar of NAV (β = −2). In both cases, the fund’s holdings are rebalanced
daily.2

It has been empirically established that if we consider investments over ex-
tended periods of time (e.g three months, one year, or more), there are significant
discrepancies between LETF returns and the returns of the corresponding lever-
aged buy-and-hold portfolios composed of index ETFs and cash (see, Lu, Wang
and Zhang, 2009). Since early 2008, the quarterly performance (over any period
of 60 business days, say) of LETFs has been inferior to the performance of the
corresponding static leveraged portfolios for many leveraged/unleveraged pairs
tracking the same index. There are a few periods where LETFs outperform, so
this is not just a one-sided effect.

For example, a portfolio consisting of two dollars invested in I-Shares Dow
Jones U.S. Financial Sector ETF (IYF) and short one dollar can be compared
with an investment of one dollar in UYG. Figures 1 and 2 compare the returns of
UYG and a twice leveraged buy-and-hold strategy with IYF, considering all 60-
day periods (overlapping) since February 2, 2008. For convenience, we present
returns in arithmetic and logarithmic scales. Figures 3 and 4, display the same
data for SKF and IYF.

Observing Figures 1 and 3, we see that the returns of the LETFs have pre-
dominantly underperformed the static leveraged strategy. This is particularly
the case in periods when returns are moderate and volatility is high. LETFs
outperform the static leveraged strategy only when return are large and volatil-
ity is small. Another observation is that the historical underperformance is more
pronounced for the short LETF (SKF).

These charts can be explained by the mismatch between the quarterly invest-
ment horizon and the daily rebalancing frequency; yet there are several points
that deserve attention.

First, we notice that, due to the daily rebalancing of LETFs, the geometric
(continuously compounded) relation

log ret.(LETF) ≈ β log ret.(ETF),

2The description of the hedging mechanism given here is not intended to be exact, but
rather to illustrate the general approach used by ETF managers to achieve the targeted
leveraged long and short exposures. For instance, managers can trade the stocks that compose
the ETFs or indices, or enter into total-return swaps to replicate synthetically the returns of
the index that they track. The fact that the returns are adjusted daily is important for our
discussion. Recently Direxion Funds, a leveraged ETF manager, has announced the launch of
products with monthly rebalancing.
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Figure 1: 60-day returns for UYG versus leveraged 60-day return of IYF. (X =
2Ret.(IY F );Y = Ret.(UY G)). We considered all 60-day periods (overlapping)
between February 2, 2008 and March 3, 2008. The concentrated cloud of points
near the 45-degree line correspond to 60-day returns prior to to September 2008,
when volatility was relatively low. The remaining points correspond to periods
when IYF was much more volatile.
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Figure 2: Same as in Figure 1, but returns are logarithmic,i.e. X =
2 ln(IY Ft/IY Ft−60);Y = ln(UY Gt/UY Gt−60).
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Figure 3: Overlapping 60-day returns of SKF compared with the leveraged
returns of the underlying ETF, overlapping, between February 2, 2008 and
March 3, 2008. (X = −2Ret.(IY F );Y = Ret.(SKF )).
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Figure 4: Comparison of logarithmic returns of SKF with the corresponding
log-returns of IYF. X = −2ln(IY Ft/IY Ft−60);Y = ln(SKFt/SKFt−60)
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is more appropriate than the arithmetic (simply compounded) relation

ret.(LETF) ≈ β ret.(ETF), β = ±2.

This explains the apparent alignment of the datapoints once we pass to loga-
rithmic returns in Figures 2 and 4.

Second, we notice that the datapoints do not fall on the 45-degree line;
they lie for the most part below it. This effect is due to volatility. It can
be explained by the fact that the LETF manager must necessarily “buy high
and sell low” in order to enforce the target leverage requirement. Therefore,
frequent rebalancing will lead to under performance for the LETF relative to a
static leveraged portfolio. The underperformance will be larger in periods when
volatility is high, because daily rebalancing in a more volatile environment leads
to more round-trip transactions, all other things being equal.

This effect is quantified using a simple model in Section 2. We derive an
exact formula for the return of an LETF as a function of its expense ratio,
the applicable rate of interest, and the return and realized variance of an un-
leveraged ETF tracking the same index (the “underlying ETF”, for short). In
particular, we show that the holder of an LETF has a negative exposure to the
realized variance of the underlying ETF. Since the expense ratio and the funding
costs can be determined in advance with reasonable accuracy, the main factor
that affects LETF returns is the realized variance. In section 3, we validate
empirically the formula on a set of 56 LETFs with double and triple leverage,
using all the data since their inception. The empirical study suggests that the
proposed formula is very accurate.

In the last section, we show that it is possible to use leveraged ETFs to
replicate a pre-defined multiple of the underlying ETF returns, provided that
we use dynamic hedging strategies. Specifically: in order to achieve a specified
multiple of the return of the underlying index or ETF using LETFs, we must
adjust the portfolio holdings in the LETF dynamically, according to the amount
of variance realized up to the hedging time by the index, as well as the level of the
index. We derive a formula for the dynamic hedge-ratio, which is closely related
to the model for LETFs, and we validate it empirically on the historical data
for 44 double-leverage LETFs. This last point – dynamic hedging – provides an
interesting connection between LETFs and options.

After completing this paper, we found out that similar results were obtained
independently by Cheng and Madhavan in a note issued by Barclays Global
Investors (Cheng and Madhavan, 2009), which contains a formula similar to
(10) without including finance and expense ratios. The application to dynamic
hedging using LETFs proposed here is new, to our knowledge, as well as the
empirical testing of the formula and the application to dynamic hedging over a
broad universe of LETFs.
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2 Modeling Leveraged ETF returns

We denote the spot price of the underlying ETF by St, the price of the leveraged
ETF by Lt and leverage ratio by β. For instance, a double-leverage long ETF
will correspond to β = 2, whereas a double-leverage short ETF corresponds to
β = −2.

2.1 Discrete-time model

Assume a model where there are N trading days, and denote by RSi and
RLi , i = 1, 2, ..., N the one-day returns for the underlying ETF and the LETF, re-
spectively. The leveraged ETF provides a pro-forma daily exposure of β dollars
of the underlying security per dollar under management.3 Accordingly, there is
a simple link between RSi and RLi . If the leveraged ETF is bullish (β > 1):

RLi = βRSi − βr∆t− f∆t+ r∆t = βRSi − ((β − 1)r + f) ∆t, (1)

where r is the reference interest rate (for instance, 3-months LIBOR), f is the
expense ratio of the LETF and ∆t = 1/252 represents one trading day.

If the leveraged ETF is bearish (β ≤ −1), the same equation holds with a
small modification, namely

RLi = βRSi − β(r − λt)∆t− f∆t+ r∆t = βRSi − ((β − 1)r + f − βλi) ∆t, (2)

where λi∆t represents the cost of borrowing the components of the underlying
index or the underlying ETF on day i. By definition, this cost is the difference
between the reference interest rate and the “short rate” applied to cash proceeds
from short-sales of the underlying ETF. If the ETF, or the stocks that it holds
are widely available for lending, the short rate will be approximately equal to
the reference rate and the borrowing costs are negligible.4

Let t be a period of time (in years) covering several days (t = N∆). Com-
pounding the returns of the LETF, we have

Lt = L0

N∏
i=1

(
1 +RLi

)
. (3)

Substituting the value of RLt in equation (1) or (2) (according to the sign of β),
we obtain a relation between the prices of the leveraged ETF and the underlying
asset. In fact, we show in the Appendix that, under mild assumptions, we have:

Lt
L0
≈
(
St
S0

)β
exp

{
β − β2

2
Vt + βHt + ((1− β)r − f) t

}
, (4)

3In the sense that this does not account for the costs of financing positions and management
fees.

4We emphasize the cost of borrowing, since we are interested in LETFs which track financial
indices. The latter have been often hard-to-borrow since July 2008. Moreover, broad market
ETFs such as SPY have also been sporadically hard-to-borrow in the last quarter of 2008; see
Avellaneda and Lipkin (2009).
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where

Vt =
N∑
i=1

(
RSi −RS

)2

with RS =
1
N

N∑
i=1

RSi , (5)

i.e. Vt is the realized variance of the price over the time-interval of interest, and
where

Ht =
N∑
i=1

λi∆t (6)

represents the accumulated cost of borrowing the underlying stocks or ETF.
This cost is obtained by subtracting the average applicable short rate from
the reference interest rate each day and accumulating this difference over the
period of interest. In addition to these two factors, formula (4) also shows the
dependence on the funding rate and the expense ratio of the underlying ETF.
The symbol “ ≈ ” in (4) means that the difference is small in relation to the
daily volatility of the ETF or LETF. In the following paragraph, we exhibit an
exact relation, assuming that the price of the underlying ETF follows an Ito
process.

2.2 Continuous-time model

To clarify the sense in which (4) holds, it is convenient to derive a similar
formula assuming that the underlying ETF price follows an Ito process. To wit,
we assume that St, satisfies the stochastic differential equation

dSt
St

= σtdWt + µtdt (7)

where Wt is a standard Wiener process and σt, µt are respectively the instanta-
neous price volatility and drift. The latter processes are assumed to be random
and non-anticipative with respect to Wt.5

Mimicking (1) and (2), we observe that if is bullish, the model for the return
of the leveraged fund is now

dLt
Lt

= β
dSt
St
− ((β − 1)r + f) dt. (8)

If the LETF is bearish, the corresponding equation is

dLt
Lt

= β
dSt
St
− ((β − 1)r − βλt + f)dt, (9)

where λt represents the cost of borrowing the underlying ETF or the stocks that
make up the ETF. In the Appendix, we show that the following formula holds:

Lt
L0

=
(
St
S0

)β
exp

((1− β)r − f) t+ β

t∫
0

λsds+
(β − β2)

2

t∫
0

σ2
sds

 , (10)

5They are not assumed to be deterministic functions or constants.
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where we assume implicitly that λt = 0 if β > 0.
Formulas (4) and (10) convey essentially the same information if we define

Vt =

t∫
0

σ2
sds, and Ht =

t∫
0

λsds.

The only difference is that (4) is an approximation which is valid for ∆t � 1
whereas (10) is exact if the ETF price follows an Ito process. These equations
show that the relation between the values of an LETF and its underlying ETF
depends on

• the funding rate

• the expense ratio for the leveraged ETF

• the cost of borrowing shares in the case of short LETFs

• the convexity (power law) associated with the leverage ratio β

• the realized variance of the underlying ETF.

The first two items require no explanation. The third follows from the fact
that the manager of a bearish LETF may incur additional financing costs to
maintain short positions if components of the underlying ETF or the ETF itself
are hard-to-borrow. The last two items are more interesting: (i) due to daily
rebalancing of the beta of the LETF, we find that the prices of a leveraged
and non-leveraged ETF are related by a power law with power β and (ii) the
realized variance of the underlying ETF plays a significant role in determining
the LETF returns.

The dependence on the realized variance might seem surprising at first. It
turns out that the holder of an LETF has negative exposure to the realized
variance of the underlying asset. This holds irrespective of the sign of β. For
instance, if the investor holds a double-long LETF, the term corresponding to
to the realized variance in formula (10) is

− (22 − 2)
2

t∫
0

σ2
s = −

t∫
0

σ2
s .

In the case of a doubly bearish fund, the corresponding term is

− ((−2)2 − (−2))
2

t∫
0

σ2
s = −3

t∫
0

σ2
s .

We note, in particular, that the dependence on the realized variance is stronger
in the case of the double-short LETF.
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3 Empirical validation

To validate the formula in (10), we consider 56 LETFs which currently trade in
the US markets. Of these, we consider 44 LETFs issued by ProShares, consisting
22 Ultra Long and 22 UltraShort ETFs.6. Table 1 gives a list of the Proshares
LETFs, their tickers, together with the corresponding sectors and their ETFs.
We consider the evolution of the 44 LETFs from January 2, 2008 to March 20,
2009, a period of 308 business days.

We also consider 12 triple-leveraged ETFs issued by Direxion Funds7. Di-
rexion’s LETFs were issued later than the ProShares funds, in November 2008;
they provide a shorter historical record to test our formula. Nevertheless, we
include the 3X Direxion funds for completeness’ sake and also because they have
triple leverage.

Double-Leveraged ETFs considered in the study

Underlying Proshares Ultra Proshares Ultra Short Index/Sector
ETF (β = 2) (β = −2)

QQQQ QLD QID Nasdaq 100
DIA DDM DXD Dow 30
SPY SSO SDS S&P500 Index
IJH MVV MZZ S&P MidCap 400
IJR SAA SDD S&P Small Cap 600

IWM UWM TWM Russell 2000
IWD UVG SJF Russell 1000
IWF UKF SFK Russell 1000 Growth
IWS UVU SJL Russell MidCap Value
IWP UKW SDK Russell MidCap Growth
IWN UVT SJH Russell 2000 Value
IWO UKK SKK Russell 2000 Growth
IYM UYM SMN Basic Materials
IYK UGE SZK Consumer Goods
IYC UCC SCC Consumer Services
IYF UYG SKF Financials
IYH RXL RXD Health Care
IYJ UXI SIJ Industrials
IYE DIG DUG Oil & Gas
IYR URE SRS Real Estate
IYW ROM REW Technology
IDU UPW SDP Utilities

Table 1: ETFs and the corresponding ProShares Ultra Long and UltraShort
LETFs.

6For information about ProShares, see http://www.proshares.com
7See http://www.direxionfunds.com
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Triple-Leverage ETFs considered in the study

Underlying Direxion 3X Bull Direxion 3X Bear Index/Sector
ETF or Index (β = 3) (β = −3)

IWB BGU BGZ Russell 1000
IWM TNA TZA Russell 2000

RIFIN.X FAS FAZ Russell 1000 Financial Serv.
RIENG.X ERX ERY Russell 1000 Energy

EFA DZK DPK MSCI EAFE Index
EEM EDC EDZ MSCI Emerging Markets

Table 2: ETFs and corresponding Direxion 3X LETFs.

We define the tracking error

ε(t) =
Lt
L0
−
(
St
S0

)β
exp

{
β − β2

2
Vt + βHt + ((1− β)r − f) t

}
, (11)

where Vt is the accumulated variance, Ht is the accumulated borrowing costs
(in excess of the reference interest rate), r is the interest rate and f is the
management fee for the underlying ETF. The instantaneous volatility is modeled
as the standard deviation of the returns of the underlying ETF sampled over a
period of 5 days preceding each trading date:

σ̂2
s =

1
5

5∑
i=1

(R(S)
(s/∆t)−i)

2 −

(
1
5

5∑
i=1

R
(S)
(t/∆t)−i

)2

, 0 ≤ s ≤ t. (12)

For the interest rates and expense ratio, we use 3-month LIBOR rate pub-
lished by the Federal Reserve Bank (H.15 Report), and the expense ratio for
the Proshares LETFs published in the prospectus. In all cases, we set λt = 0,
i.e. we do not take into account stock-borrowing costs explicitly.

The empirical results for ProShares are summarized in Tables 2 and 3 here-
after. Graphical comparisons of the tracking error for some of the major indices
are also displayed in Figures 1 - 8.

In the case of long LETFs, we find that the average of the tracking error
ε(t) over the simulation period is typically less than 100 basis points. The
standard deviation is also on the order of 100 basis points, with a few slightly
higher observations. This suggests that the formula (10), using the model for
stochastic volatility in (12), gives a reliable model for the relation between the
leveraged and the underlying ETFs across time.

In the case of short ETFs, we also assume that λt = 0 but expect a slightly
higher tracking error, particularly between July and November of 2008, when
restrictions for short-selling in U.S. stocks were put in place. We observe higher
levels for the mean and the standard deviation of the tracking error and some
significant departures from the exact formula during the period of October and
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November 2008, especially in Financials, which we attribute to short-selling
constraints. The tracking errors for the Direxion triple-leveraged ETFs have
higher standard deviations, which is not surprising given that they have higher
leverage. We note, in particular, that the errors for FAS and FAZ are the largest,
which is consistent with the fact that they track financial stocks.

The conclusion of the empirical analysis is that the formula (10) explains
well the behavior of the price of leveraged ETFs and the deviations between
LETF returns and the returns of the underlying ETFs.

Double-Leverage Ultra Long ETFs

Underlying Tracking Error Standard Deviation Leveraged
ETF (average, %) (%) ETF

QQQQ 0.04 0.47 QLD
DIA 0.00 0.78 DDM
SPY -0.06 0.40 SSO
IJH -0.06 0.38 MVV
IJR 1.26 0.71 SAA

IWM 1.26 0.88 UWM
IWD 1.00 0.98 UVG
IWF 0.50 0.59 UKF
IWS -0.33 1.20 UVU
IWP -0.02 0.61 UKW
IWN 2.15 1.29 UVT
IWO 0.50 0.74 UKK
IYM 1.44 1.21 UYM
IYK 1.20 0.75 UGE
IYC 1.56 1.04 UCC
IYF -0.22 0.74 UYG
IYH 0.40 0.42 RXL
IYJ 1.05 0.74 UXI
IYE -0.73 1.71 DIG
IYR 1.64 1.86 URE
IYW 0.51 0.55 ROM
IDU 0.25 0.55 UPW

Table 3: Average tracking error (11) and standard deviation obtained by apply-
ing formula (10) to the Proshares long LETFs from January 2, 2008 to March
20 2009. Notice that that the average tracking error is for the most part below
100bps and the standard deviation is comparable. In particular the standard de-
viation is inferior to the daily volatility of these assets, which often exceeds 100
basis points as well. This suggests that formula (10) gives the correct relation
between the NAV of the LETFs and their underlying ETFs.
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Double-Leveraged Ultra Short ETFs

Underlying Tracking Error Standard Deviation Leveraged
ETF (average, %) (%) ETF

QQQQ 0.22 0.80 QID
DIA -2.01 3.24 DXD
SPY -1.40 2.66 SDS
IJH 0.69 0.64 MZZ
IJR -0.55 0.86 SDD

IWM 0.94 0.91 TWM
IWD 0.32 1.40 SJF
IWF -0.30 1.34 SFK
IWS -2.06 3.03 SJL
IWP 0.93 0.92 SDK
IWN -2.21 1.80 SJH
IWO -0.19 0.79 SKK
IYM 1.82 0.99 SMN
IYK -0.76 1.98 SZK
IYC 0.79 0.92 SCC
IYF 3.30 3.03 SKF
IYH 1.04 0.91 RXD
IYJ 0.32 0.74 SIJ
IYE 0.43 3.09 DUG
IYR 2.00 2.07 SRS
IYW 0.01 0.80 REW
IDU 1.75 1.06 SDP

Table 4: Same as in Table 3, for double-short LETFs. Notice that the tracking
error is relatively small, but there are a few funds where the tracking error is
superior to 200 basis points. We attribute these errors to the fact that may
ETFs, particularly in the Financial and Energy sectors, and the stocks in their
holdings were hard-to-borrow from July to November 2008.

Triple-Leveraged Bullish ETFs

Underlying Tracking Error Standard Deviation 3X bullish
ETF/Index (average, %) (%) LETF

IWB 0.44 0.55 BGU
IWM 0.81 0.75 TNA

RIFIN.X 3.67 2.08 FAS
RIENG.X 2.57 0.70 ERX

EFA 1.26 2.32 DZK
EEM 1.41 1.21 EDC

Table 5: Average tracking errors and standard deviations for triple-leveraged
long ETFs analyzed here, since their inception in November 2008.
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Triple-Leveraged Bearish ETFs

Underlying Tracking Error Standard Deviation 3X bearish
ETF/Index average, %) (%) LETF

IWB -0.08 0.64 BGZ
IWM 0.65 0.76 TZA

RIFIN.X -1.63 4.04 FAZ
RIENG.X -1.41 1.01 ERY

EFA -1.54 1.86 DPK
EEM 0.49 1.43 EDZ

Table 6: Average tracking errors and standard deviations for triple-leveraged
short ETFs analyzed here, since their inception in November 2008. Notice again
that the errors for financials and energy are slightly higher than the rest.

4 Consequences for buy-and-hold investors

4.1 Comparison with buy-and-hold: break-even levels

Formula (10) suggests that an investor who is long a leveraged ETF has a “time-
decay” associated with the realized variance of the underlying ETF. In other
words, if the price of the underlying ETF does not change significantly over
the investment horizon, but the realized volatility is large, the investor in the
leveraged ETF will underperform the corresponding leveraged return on the
underlying ETF. On the contrary, if the underlying ETF makes a sufficiently
large move in either direction, the investor will out-perform the underlying ETF.

Consider an investor who buys one dollar of leveraged ETF and simultane-
ously shorts β dollars of the underlying ETF (where shorting a negative amount
means buying). For simplicity, we assume that the interest rate, fees and bor-
rowing costs are zero.

If we use equation (10), the equity in the investor’s account will be equal to

E(t) =
(
St
S0

)β
e−

(β2−β)
2 Vt − β St

S0
− (1− β), (13)

including the cash credit or debit from the initial transaction. To be concrete,
we consider the case of a double long and a double short separately. Setting
Y = E(t) and X = St

S0
, we obtain

Y = e−VtX2 − 2X + 1, β = 2,

Y = e−3Vt
1
X2

+ 2X − 3, β = −2. (14)

In the case of the double-long ETFs, the equity behaves like a parabola
in X = St/S0 with a curvature tending to zero exponentially as a function
of the realized variance. The investor is therefore long convexity (Gamma, in
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options parlance) and short variance, hence he incurrs time-decay (Theta). In
the case of double-shorts, the profile is also a convex curve, which has convexity
concentrated mostly for X � 1, and a much faster time-decay. From equation
(14), find that the break-even levels of X, Vt needed for achieving a positive
return by time t are

• Double-long LETF

X > X+ = eVt
(

1 +
√

1− e−Vt
)

X < X− = eVt
(

1−
√

1− e−Vt
)

• Double-short LETF

X+, X− are the positive roots of the cubic equation
2X3 − 3X2 + e−3Vt = 0 (15)

A similar analysis can be made for triple leveraged ETFs. The main ob-
servation is that, regardless of whether the LETFs are long or short, they un-
derperform the static leveraged strategy unless the returns of the underlying
ETFs overcome the above volatility-dependent break-even levels. These levels
are further away from the initial level as the realized variance increases.

4.2 Targeting an investment return using dynamic repli-
cation with LETFs

Let us assume that an investor wants to replicate the return of a an ETF or an
index over a given investment horizon using the corresponding leveraged ETF.
We know that merely holding the LETF will not guarantee the desired return
due to the convexity and volatility effects. We seek to achieve this objective by
dynamically adjusting the holdings in the LETF. Denote by T be the investment
horizon and by m the notional amount invested. From (10), it follows that the
target investment return satisfies

m

{
ST
S0
− 1
}

= m

{(
LT
L0

)1/β

eA(0,T ) − 1

}
(16)

where A(t, T ) is defined by the equation

A(t, T ) =
1
β

T∫
t

(
β2 − β

2
σ2
s − βλs + (β − 1)r + f

)
ds. (17)

Thus, a hypothetical contract that delivers the return of the ETF over an in-
vestment horizon (0, T ) can be viewed as a “derivative security” contingent on
the LETF with a payoff corresponding to the right-hand side of equation (16).
The “fair value” of this derivative, at any intermediate time t < T , is given by
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the expected value of the payoff with respect to a risk-neutral probability mea-
sure under which Lt is a martingale after adjusting for interest and dividends.
Accordingly, we consider the function

V (L,A, σ, t) =

e−r(T−t)E

{
m

((
LT
L0

) 1
β

eA(0,T ) − 1

)
|Lt = L,A(0, t) = A, σt = σ

}
,

(18)

where E(·) denotes expectation with respect to the pricing measure and ST
and LT , A(0, T ) are connected via formula (10). This function corresponds to
the “fair value” of a derivative security written on Lt which delivers the return
of the underlying ETF at time T (see, for instance, Avellaneda and Laurence
(1999)). We show in the Appendix that

V (L,A, σ, t) = V (L,A, t) = e−d(T−t)m

(
L

L0

) 1
β

eAe
f(T−t)
β − e−r(T−t)m. (19)

Notice that this value depends only on A(0, t) and Lt at time t and not on the
current value of the stochastic volatility. This means that theoretical we should
be able to replicate the target return on the ETF by dynamic hedging with the
LETF, without additional risk due to volatility fluctuations.

Consider the function

∆(L,A, t) = e−d(T−t)e
f(T−t)
β eA

m

β

(
L

L0

)1/β

. (20)

In the Appendix, we show that that a static investment in this “derivative secu-
rity” and a dynamically adjusted position in LETFs consisting of ∆(Lt, A(0, t), t)
dollars invested in the LETFs at time t will have identical payoffs at time T .
This gives us a replicating strategy, under arbitrary stochastic volatility mod-
els, for leveraged returns of the underlying ETF over any time horizon T using
LETFs.

In Tables 7 and 8 we demonstrate the effectiveness of this dynamic repli-
cation method using different rebalancing techniques. We consider dynamic
hedging in which we rebalance if the total Delta exceeds a band of 1%, 2%,
5% and 10%, and also hedging with fixed time-steps of 1, 2, 5 or 15 business
days. Table 9 indicates the expected number of days between rebalancing for
strategies that are price-dependent. The results indicate that rebalancing when
the Delta exposure exceeds 5% of notional give reasonable tracking errors. The
corresponding average intervals between rebalancings can be large, which means
that, in practice, one can achieve reasonable tracking errors without necessarily
rebalancing the Delta daily or even weekly.

A strong motivation for using LETFs to target a given level of return is to
take advantage of leverage. However, in order to achieve his target return over
an extended investment period using LETFs, the investor needs to rebalances his
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Average tracking error (%) for dynamic replication of 6-month
returns using double-long LETFs

ETF 1 % 2 % 5 % 10 % 1 day 2 day 5 day 15 day

QQQQ -0.29 -0.71 -1.05 -1.62 -0.56 -0.96 -1.45 -1.74
DIA -0.99 -0.99 -1.37 -1.45 -0.47 -0.59 -0.84 -0.99
SPY -0.97 -0.92 -1.19 -1.47 -0.92 -1.17 -1.55 -1.77
IJH -0.39 -0.37 -0.79 -0.99 -0.53 -0.75 -1.05 -1.09
IJR -0.56 -0.57 -1.07 -2.68 -0.66 -0.90 -1.44 -1.70

IWM 0.37 0.22 -0.49 -1.44 0.47 0.03 -0.70 -0.93
IWD -0.03 -0.35 -0.30 -0.64 0.00 -0.15 -0.57 -0.79
IWF -0.15 -0.25 -0.54 -1.08 -0.12 -0.37 -0.68 -0.81
IWS 0.87 0.22 0.81 0.14 0.69 0.71 0.54 0.24
IWP -0.16 -0.14 -0.54 -1.41 -0.36 -0.40 -0.82 -0.89
IWN 0.94 0.40 0.56 -0.03 -0.91 0.86 0.36 0.14
IWO 0.23 0.03 -1.00 -1.63 -0.05 -0.44 -1.15 -1.45
IYM -0.39 -0.51 -0.89 -2.35 -0.24 -0.67 -1.54 -1.91
IYK 0.24 0.13 -0.16 -0.06 0.37 0.34 0.10 0.04
IYC 0.58 0.57 -0.13 -0.76 0.71 0.70 0.04 -0.21
IYF -0.36 -0.62 0.01 -0.54 -0.30 -0.35 -1.28 -2.17
IYH 0.22 -0.10 -0.14 0.27 0.30 0.19 0.03 0.07
IYJ 0.12 -0.09 -0.36 -0.92 0.14 -0.04 -0.30 -0.61
IYE -1.44 -2.02 -1.90 -1.76 -1.19 -1.82 -2.21 -2.07
IYR -0.43 0.58 -0.80 -0.95 -0.61 0.55 -0.74 -1.48
IYW -0.50 -0.46 -1.67 -1.39 -0.37 -0.85 -1.41 -1.76
IDU 0.75 0.45 0.73 0.11 0.83 0.78 0.46 0.52

Table 7: Average tracking error, in % of notional, for the dynamic replication
of ETF returns over 6 months with m = β. The first four columns correspond
to rebalancing when the Delta reaches the edge of a band of ±x% around zero.
The last four columns correspond to rebalancing at fixed time intervals. The
data used to generate this table corresponds, for each ETF, to all overlapping
6-month returns in the year 2008.
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Standard deviation of tracking error (%) for dynamic replication of
6-month returns using double-long LETFs

ETF 1 % 2 % 5 % 10 % 1 day 2 day 5 day 15 day

QQQQ 0.75 0.77 0.80 1.20 0.75 0.76 0.84 0.93
DIA 0.35 0.37 0.41 0.36 0.36 0.39 0.47 0.43
SPY 0.27 0.32 0.39 0.69 0.27 0.30 0.39 0.45
IJH 0.48 0.49 0.56 1.19 0.47 0.48 0.62 0.65
IJR 1.19 1.21 1.33 1.39 1.20 1.29 1.22 1.17

IWM 0.66 0.67 0.71 1.60 0.67 0.75 0.71 0.74
IWD 1.38 1.38 1.40 1.52 1.38 1.43 1.41 1.49
IWF 0.93 0.94 1.07 1.21 0.95 0.99 0.94 0.99
IWS 2.05 2.05 2.08 2.29 2.05 2.01 2.07 2.09
IWP 0.83 0.82 0.93 1.24 0.83 0.91 0.84 0.91
IWN 1.71 1.70 1.76 2.09 1.72 1.70 1.80 1.82
IWO 0.80 0.80 0.91 1.32 0.79 0.99 0.84 1.00
IYM 1.05 1.07 1.15 1.24 1.07 1.20 1.29 1.59
IYK 0.57 0.57 0.63 0.67 0.56 0.63 0.61 0.63
IYC 0.80 0.78 0.83 0.95 0.80 0.98 0.91 1.03
IYF 1.12 1.18 1.12 1.88 1.10 1.21 2.01 1.49
IYH 0.56 0.55 0.58 0.73 0.56 0.55 0.57 0.62
IYJ 0.71 0.75 0.82 0.84 0.70 0.70 0.79 0.87
IYE 0.64 0.66 0.77 1.26 0.64 0.65 1.02 1.49
IYR 1.47 1.47 1.62 2.08 1.47 1.60 1.88 1.83
IYW 1.45 1.45 1.59 2.05 1.45 1.39 1.49 1.42
IDU 0.53 0.52 0.54 0.72 0.51 0.53 0.54 0.60

Table 8: Same as the previous table, for the standard deviation of tracking
errors.
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Average number of business days between portfolio rebalancing for
the 6-month dynamic hedging strategy: the effect of changing the

Delta band

ETF 1 % 2 % 5 % 10 %

QQQQ 2.03 4.14 24 60
DIA 2.50 5.22 30 120
SPY 2.73 5.22 40 NR
IJH 2.26 4.62 24 NR
IJR 2.03 4.29 20 NR

IWM 1.85 4.62 30 NR
IWD 2.18 5.00 30 120
IWF 2.26 5.00 30 NR
IWS 2.26 6.67 17 NR
IWP 1.85 4.14 30 NR
IWN 2.26 4.62 24 NR
IWO 1.85 4.00 20 60
IYM 1.74 3.08 9 40
IYK 3.16 8.57 30 120
IYC 1.90 3.87 30 NR
IYF 1.45 2.93 9 30
IYH 2.79 10.91 30 120
IYJ 2.35 4.80 17 NR
IYE 1.79 3.43 12 40
IYR 1.62 3.16 17 30
IYW 2.00 3.53 40 NR
IDU 2.67 6.32 20 120

Table 9: Each column shows the average number of days between rebalancing
the portfolio, assuming different Delta-bandwidth for portfolio rebalancing. For
instance, the column with heading of 1% corresponds to a strategy that rebal-
ances the portfolio each time the net delta exposure exceeds 1% of the notional
amount. The expected number of days between rebalancing increases as the
bandwidth increases.

20



portfolio according to his Delta exposure. Because of this, dynamic replication
with LETFs may not be suitable to many retail investors. On the other hand,
this analysis will be useful to active traders, or traders who manage leveraged
ETFs with longer investment horizons, since we have shown that the latter can
be “replicated” dynamically with LETFs which are rebalanced daily.

5 Conclusion

This study presents a formula for the value of a leveraged ETF in terms of
the value of the underlying index or ETF. The formula is validated empirically
using end-of-day data on 56 LETFs of which 44 are double-leveraged and 12
are triple leveraged. This formula validates the fact that on log-scale leveraged
ETFs will underperform the nominal returns by a contribution that is primarily
due to the realized volatility of the underlying ETF. The formula also takes into
account financing costs and shows that for short ETFs, the cost of borrowing
the underlying stock may play a role as well, as observed in Avellaneda and
Lipkin (2009).

We also demonstrate that LETFs can be used for hedging and replicating
unleveraged ETFs, provided that traders engage in dynamic hedging. In this
case, the hedge-ratio depends on the realized accumulated variance as well as on
the level of the LETF at any point in time. The path-dependence of leveraged
ETFs makes them interesting for the professional investor, since they are linked
to the realized variance and the financing costs. However, they may not be
suitable for buy-and-hold investors which aim at replicating a particular index
taking advantage of the leveraged provided, for the reasons explained above.
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7 Appendix

7.1 Discrete-time Model (Equation (4))

Set ai = (β − 1)r + f + βλi, where λi is the cost of borrowing the underlying
asset on day i (λi is zero if β > 0.) We assume that

RSi = ξi
√

∆t+ µ∆t

where ∆t = 1/252 and ξi, i = 1, 2, ... is a stationary process such that ξi has
mean equal to zero and finite absolute moments of order 3. This assumption is
consistent with many models of equity returns. Notice that we do not assume
that successive returns are uncorrelated.

From Equations (1), (2) and (3), we find using Taylor expansion that

ln

(
Lt
L0

)
=

∑
i

ln
(
1 +RLi

)
=

∑
i

ln
(
1 + βRSi − ai∆t

)
=

∑
i

(
βRSi − ai∆t−

β2

2
(RSi )2

)
+
∑
i

(O(|RSi |3) +O(|RSi |∆t))

(21)

By the same token, we have

βln

(
St
S0

)
= β

∑
i

ln
(
1 +RSi

)
= β

∑
i

(
RSi −

1
2

(RSi )2

)
+
∑
t

O((RSi )3)

(22)

Subtracting equation (22) from equation (21), we find that
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ln

(
Lt
L0

)
− βln

(
St
S0

)
= −

∑
i

(
ai∆t+

β2 − β
2

(RSi )2

)
+
∑
i

(O(|RSi |3) +O(|RSi |∆t))

= −
∑
i

(
ai∆t+

β2 − β
2

((RSi )2 − µ2(∆t)2)
)

+
∑
i

(O(|RSi |3) +O(|RSi |∆t) +O((∆t)2))

= −
∑
i

ai∆t−
β2 − β

2
Vt +

∑
i

(O(|RSi |3) +O(|RSi |∆t) +O((∆t)2))

(23)

We show that the remainder in this last equation is negligible. In fact, we have∑
i

|RSi |3 =
∑
i

|ξi|3(∆t)3/2

=


∑
i

|ξi|3

N

 t
√

∆t

≈ E(|ξ3
1 |) t
√

∆t (24)

and, similarly, ∑
i

|RSi |∆t =
∑
i

|ξi|(∆t)3/2

=


∑
i

|ξi|

N

 t
√

∆t

≈ E(|ξ1|) t
√

∆t. (25)

Therefore, the contribution of the last sum in (23) is bounded by the first three
moments of ξ1, multiplied by the investment horizon, t and by

√
∆t. This means

that if we neglect the last terms, for investment horizons of less than 1 year,
the error is of the order of the standard deviation of the daily returns of the
underlying ETF, which is neglig

7.2 Continuous-time model (Equation (10))

The above reasoning is exact for Ito processes, because it corresponds to ∆t→ 0.
To be precise, we consider equations (7), (8) and (9) and apply It0̂’s Lemma to
obtain
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dlnSt =
dSt
St
− σ2

t

2
dt (26)

dlnLt = β
dSt
St
− β2σ2

t

2
dt+ ((β − 1)r + f + βλi)dt, (λi = 0 if β > 0)

(27)

Multiplying equation (26) by β and subtracting it from equation (27) , we obtain

dlnLt − βdlnSt = − (β2 − β)σ2
t

2
dt+ ((β − 1)r + f + βλi)dt, (28)

which implies equation (10).

7.3 Dynamic Replication

We neglect the borrowing costs λt, for simplicity. The risk-neutral measure is
such that Lt satisfies the stochastic differential equation

dLt
Lt

= βσdWt + (r − βd)dt (29)

where d is the dividend yield of the underlying ETF. The reason for this is
that the holder of the LETF receives (pays) the corresponding multiple of the
dividend of the underlying index, as in a total-return swap. Notice that the
risk-neutral measure does not involve the expense-ratio, f .

Using this last equation, we have

V (L,A, t) = e−r(T−t)E

{
m

((
LT
L0

) 1
β

eA(0,T ) − 1

)
|Lt = L,A(0, t) = A

}

= e−r(T−t)m

(
L

L0

) 1
β

eAE

{(
LT
L

) 1
β

eA(t,T )|Lt = L,A(0, t) = A

}
− e−r(T−t)m

= e−r(T−t)m

(
L

L0

) 1
β

eAe(r−βd)T−tβ +
(β−1)r(T−t)

β +
f(T−t)
β − e−r(T−t)m

= e−r(T−t)m

(
L

L0

) 1
β

eAer(T−t)−d(T−t)+ f(T−t)
β − e−r(T−t)m

= e−d(T−t)m

(
L

L0

) 1
β

eAe
f(T−t)
β − e−r(T−t)m (30)

where A(t, T ) is defined in equation (17). This is a direct consequence of Equa-

tion (10). Set U(L,A, t) = e−d(T−t)m
(
L
L0

)1/β

eAe
f(T−t)
β ,so that ∆(L,A, t) =

L∂U∂L = U
β . By Itô’s Lemma,
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dU(Lt, A(0, t), t) =
∂U

∂L
dLt +

1
2
∂2U

∂L2
(dLt)2 + UdA(0, t) + (d− f

β
)Udt

=
1
β
U
dLt
Lt

+
1
2

1
β

(
1
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)
U
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t

+U
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2
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β
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f

β

]
dt+ (d− f

β
)Udt

=
1
β
U
dLt
Lt

+
1
2

1
β

(
1
β
− 1
)
Uσ2β2dt+ (Ud)dt

+U
[
β − 1

2
σ2 +

β − 1
β

r

]
dt

=
1
β
U
dLt
Lt

+ U

[
d+

β − 1
β

r

]
dt

=
1
β
U
dLt
Lt

+ rUdt+
1
β
U (βd− r) dt. (31)

A financed position consisting of one unit of the derivative security and short
∆(L,A, t) = U

β dollars of the LETF will have a profit-loss of

Π = dV − 1
β
U
dLt
Lt
− rV dt+ (r − βd)

1
β
Udt,

where the last two terms correspond to the financing of the derivative and that
cost of carry for the hedge. Substituting formula (31), we find that

Π = dU − rme−r(T−t)dt− 1
β
U
dLt
Lt
− rV dt+ (r − βd)

1
β
Udt

=
1
β
U
dLt
Lt

+ rUdt+
1
β
U (βd− r) dt− rme−r(T−t)dt

− 1
β
U
dLt
Lt
− rV dt+ (r − βd)

1
β
Udt

= rUdt− rme−r(T−t)dt− rV dt
= 0, (32)

which shows us that continuous delta-hedging gives an exact replication of the
target return, as suggested by the empirical study.
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