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Cannon’s Conjecture (CC) gives a group-theoretic generalization of the
generic case of W. P. Thurston’s famous Geometrization Conjecture (GC)
for 3-dimensional manifolds recently proved by G. Perelman. CC is mo-
tivated by that part of the Geometrization Conjecture that concerns the
problem of promoting a metric of variable negative curvature to a metric of
constant negative curvature. CC claims that, if an infinite, finitely presented
group acts roughly like the fundamental group of a hyperbolic 3-manifold
near infinity, then the group can be realized as a group of 2 × 2 matri-
ces with complex entries acting conformally on the 2-dimensional sphere S2

and by rigid motion on non Euclidean hyperbolic 3-dimensional space H3.
Perelman’s work for manifolds and its recent generalization to orbifolds es-
tablishes the result in the case that the group is in fact the fundamental
group of a 3-dimensional manifold or orbifold but leaves the general case
open.

Here is a precise statement of the conjecture followed by the supporting
definitions.

Cannon’s Conjecture. Suppose that G is an infinite, finitely presented
group whose Cayley graph is Gromov-hyperbolic and whose space at infinity
is the 2-sphere S2. Then G is a Kleinian group.

Cayley graph. Let G denote a group having a finite generating set C =
{c1, . . . , ck}. Arthur Cayley associated with each such group G a connected
graph Γ = Γ(G,C) that gives a geometric picture of the group G and, in
fact, supplies an abbreviated multiplication table for the group. The Cayley
graph is defined as follows. The vertices of Γ are the elements g ∈ G. Each
edge of Γ has the form e = (g, c, g · c), is directed from initial vertex g ∈ G
to terminal vertex g · c ∈ G, and is labelled by element c ∈ C. The inverse
of this edge has the form e−1 = (g · c, c−1, g).

Gromov-hyperbolic group. Non Euclidean geometry has thin triangles,
a simple property not satisfied in Euclidean space. Here is the appropriate
definition as applied to Cayley graphs. The Cayley graph Γ has a natural
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metric which assigns each edge the length of 1. Between each pair p, q ∈ Γ,
there will be one or more shortest paths, which are called geodesics. A
geodesic triangle ∆ in Γ then consists of three points a, b, and c and geodesic
paths ab, bc, and ca between them. If δ > 0 is a positive number, then we
say that the triangle ∆ is δ-thin if the δ-neighborhood of each point of ∆
intersects at least two of the paths ab, bc, and ca. The Cayley graph Γ and
the group G are said to be Gromov-hyperbolic if there is a positive number
δ such that every geodesic triangle in Γ is δ-thin. This property, unusual as
it may seem, is actually generic in the sense that it is satisfied by the Cayley
graphs of most finitely presented groups.

The space at infinity. Every Gromov-hyperbolic group G has a natural
space at infinity defined as follows. Let 0 represent a fixed point of Γ. Each
point at infinity is represented by a geodesic ray R which begins at 0 = R(0)
and is parametrized by distance t ∈ [0,∞) from the base point 0. Two rays
R and S represent the same point at infinity if, for some positive bound
B, R(t) and S(t) are within B of one another for all values of t. Points
represented by rays R and S are said to be close to each other if R(t) and
S(t) are close to one another for all t in a large initial interval [0, T ]. The
space at infinity is always finite dimensional, compact, and metrizable.

Kleinian group. A group G is Kleinian if it can be realized as a group of
2 × 2 complex matrices acting conformally on the 2-sphere S2 and by rigid
motions on hyperbolic 3-dimensional non Euclidean geometry. Here are the
precise technical conditions that will not explained here: namely, the action
on H3 should be isometric, properly discontinuous, and cocompact.

The difficulty in proving the conjecture is this. The hypothesis gives a
natural action of the groupG on two combinatorially defined objects, namely
the Cayley graph and its topological 2-sphere space at infinity. The Cayley
graph is in a precise sense analogous to non Euclidean hyperbolic 3-space
H3, but the hypothesis gives no natural connection between the two. The
space at infinity is, in a precise sense, analogous to the 2-sphere boundary
S2 of H3, but the hypothesis gives no natural connection between the given
topological space at infinity and the classical complex analytic structure on
the round 2-sphere. There are uncountably many ways of introducing an
analytic structure on the topological space at infinity, and at most one of
these uncountably many structures is compatible with the group action and
can satisfy the conjecture. That is, a search is required for the (possibly
existing) one and only one needle in an uncountable haystack.

Many approaches have been taken in attempts to prove the con-
jecture. It is enough to show that it is possible to embed the Cayley graph
into H3 in such a way that the metrics of the two spaces are comparable; but
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this is a difficult task. Other attacks are based on a combinatorial version
of classical conformal modulus. Others try to minimize Hausdorff dimen-
sion among metrics on S2 compatible with the combinatorial group action.
Another approach employs nonstandard Teichmüller theory. A fourth uses
measures of regularity from geometric measure theory.

The modulus approach considers expanding balls in the metric on the Cay-
ley graph. Each ball about the base point induces an open cover of the
space at infinity. Each open cover of the space at infinity gives an approxi-
mate measure to the conformal shapes of sets at infinity. These approximate
shapes can be individually optimized by combinatorial versions of the clas-
sical Riemann mapping theorem. Provided that these optimized shapes are
not drastically distorted as the balls expand in radius so that the covers at
infinity become finer and finer, then the desired analytic structure at infinity
can be found. The unsurmounted difficulty is that one is required to compare
the results of countably many optimizations of ever increasing complexity.
[See the Combinatorial Riemann Mapping Theorem and Cannon-Swenson.]
The necessary and sufficient conditions have been formulated as axioms to
be checked.

The approach via Hausdorff dimension requires alteration of the metric at
infinity in such a way as to be compatible with the group action yet reduce
the Hausdorff dimension of the space at infinity to 2. As of yet, the dimen-
sion has been reduced to a value within the range (2, 2 + ε), where ε > 0 can
be chosen arbitrarily.

Gromov hyperbolic groups all enjoy a linear recursive structure at infinity
which gives a local combinatorial picture of the space at infinity by a planar
subdivision rule. This subdivision rule can be defined by a self-map of a
non-Hausdorff, compact surface. Analytic structures on this surface can
presumably be classified by some nonstandard Teichmüller space. The self-
map of the surface should induce a continuous self-map of the corresponding
Teichmüller space, and the desired analytic structure at infinity should then
arise from a fixed point of the Teichmüller map.

Another approach takes tools from geometric measure theory and seeks mea-
sures on the space at infinity such that the group action is sufficiently regular.

It may be that the conjecture will finally be resolved by modifications of
Perelman’s approach via flow of Ricci curvature.

Related problems. The general version of the problem is this: Given an
object defined combinatorially, optimize the shape of that object geometri-
cally.
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For example, consider a knotted circle K in the 3-dimensional sphere S3.
Thurston proved that the complement S3 \ K of K in S3 has a unique
geometric structure. Almost all of these unique structures are non Eu-
clidean hyperbolic. In fact, according to the surveys of Jim Hoste, Morwen
Thistlethwaite, and Jeff Weeks, there are 1,701,936 prime knots having 16
or fewer crossings, and only 32 of these are not hyperbolic.

Similarly, according to a natural notion of density, almost all finitely pre-
sented groups are Gromov hyperbolic. For most of these, however, the space
at infinity is not the 2-sphere.

Among the countably many compact 2-dimensional manifolds all but four
admit a hyperbolic non-Euclidean structure.

Every rational function of one complex variable defines a mapping from the
2-sphere S2 = C ∪ {∞} to intself. This map is branched in the sense that,
in local coordinates, it looks like a power map z 7→ zk, with k varying from
point to point. A natural question asks, “If the local branching data is given
for some self-map of the 2-sphere S2, when is there a rational map having
that branching data?” For a large class of branched maps, Thurston has
answered the question in terms of a certain obstruction which can sometimes
be calculated. It is conjectured that the Thurston obstructions for branched
maps are in some precise sense equivalent to the modulus axioms mentioned
above relative to Gromov-hyperbolic groups.

The same subdivision rules that exist at infinity for Gromov-hyperbolic
groups can often be defined for branched maps of the 2-sphere and for the
complements of knotted circles in S3. For branched maps, the subdivision
rules give a combinatorial analysis of the Julia set of the map. It is possible
that subdivision rules may prove to be a unifying point of view in the study
of Kleinian groups, knot groups, and rational maps.


