Analytic number theory, homework 1.

Exercise 1. Let ¢ be a positive integer. Show that if o > 1 then
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where the product is over primes dividing q.

Exercise 2. Let G(s) = Y p~* be the prime zeta function. Prove that
u
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for any if ¢ > 1. Show that G can be extended to o0 > 0, the extension having a
countable number of (logarithmic) singularities on this domain.

Exercise 3. For a given k € N*, let o (x) be the number of integers in [2, 2] such
that Q(n) = k. Prove that
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Exercise 4. Prove that, for any |z| < 2 and o > 1,
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Exercise 5. Prove that for a small enough constant ¢ the following holds, uniformly
on [t >1,0>1— e (7=t +4):
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Exercise 6. Let a(s) = > a,n~* be a Dirichlet series with abscissa of convergence
0., and si(z) = — [° #2%dy. Prove the following quantitative version of Perron’s
formula: for any o9 > max{0, 0.}, uniformly in > C, C' large enough, we have
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