Complex analysis, homework 5 due February 23rd.

Exercise 1.[5 points] Prove the function defined by $f(z) = x^2 - y^2 + y + 2 + ix(2y-1)$ for z = x + iy is entire and find f'(z).

Exercise 2.[5 points] Compute the following quantities (that is express them in x + iy form):

- (1) $\exp(2+i\frac{5\pi}{6});$ (2) $\log((-e+ei)/\sqrt{2})$ and $\log((-e+ei)/\sqrt{2})$.

Exercise 3.[3 points] Let $z \in \mathbb{C}$. Prove that $\overline{\exp(z)} = \exp(\overline{z})$.

Exercise 4.[4 points] Solve the equation $e^{2z} + 1 = i$.

Exercise 5.[6 points] Prove that

- (1) $\operatorname{Log}((1-i)^2) = 2\operatorname{Log}(1-i);$ (2) $\operatorname{Log}((1+i\sqrt{3})^4) \neq 4\operatorname{Log}(1+i\sqrt{3});$

Exercise 6.[7 points] Recall that for any $z \neq 0$, we define $\text{Log}(z) = \ln |z| + i \operatorname{Arg}(z)$. Let $D = \{z \in \mathbb{C} : \operatorname{Im}(z) > 0\}.$

- (1) Using a geometric argument, express $\operatorname{Arg}(z)$ for $z = x + iy \in D$ in terms of \cos^{-1} , x and y. Explain why this formula does not work for all $z \neq 0$.
- (2) Using the theorem of Section 23, prove that Log is analytic on D and that $\operatorname{Log}'(z) = 1/z$ for any $z \in D$.

Reminder: $\frac{\mathrm{d}}{\mathrm{d}t}\cos^{-1}(t) = -\frac{1}{\sqrt{1-t^2}}.$