Exercise 1 [5 points] Prove the function defined by \(f(z) = x^2 - y^2 + y + 2 + ix(2y - 1) \) for \(z = x + iy \) is entire and find \(f'(z) \).

Solution. We write \(f(z) = u(x, y) + iv(x, y) \) with \(u(x, y) = x^2 - y^2 + y + 2 \) and \(v(x, y) = 2xy - x \). Note that \(u \) and \(v \) are two-variable polynomials so they have partial derivatives everywhere and these partial derivatives are continuous everywhere. Moreover,

\[u_x(x, y) = 2x = v_y(x, y) \]

\[u_y(x, y) = -2y + 1 = -(2y - 1) = -v_x(x, y) \]

Therefore, the Cauchy-Riemann Equations are satisfied everywhere. We can apply the theorem in Section 23 to conclude that \(f \) is differentiable on \(\mathbb{C} \) and therefore entire. Moreover,

\[f'(z) = u_x(x, y) + iv_x(x, y) = 2x + i(2y - 1) = 2z - i. \]

Exercise 2. [5 points] Compute the following quantities (that is express them in \(x + iy \) form):

1. \(\exp(2 + i\frac{5\pi}{6}) \);
2. \(\log((-e + ei)/\sqrt{2}) \) and \(\text{Log}((-e + ei)/\sqrt{2}) \).

Solution.

1. \(\exp(2 + i\frac{5\pi}{6}) = e^2 \cdot e^{i\frac{5\pi}{6}} = e^2 \cos\left(\frac{5\pi}{6}\right) + i \sin\left(\frac{5\pi}{6}\right) = e^2 \left(-\frac{\sqrt{3}}{2} + i \frac{1}{2} \right) = -e^{\frac{\sqrt{3}}{2}}e^2 + i\frac{1}{2}e^2. \)

2. Let \(z = (-e + ei)/\sqrt{2} \). Then

\[|z| = \sqrt{\left(-\frac{e}{\sqrt{2}}\right)^2 + \left(\frac{e}{\sqrt{2}}\right)^2} = \sqrt{\frac{e^2}{2} + \frac{e^2}{2}} = e. \]

Therefore, \(z = |z|(-\frac{1}{\sqrt{2}} + i\frac{1}{\sqrt{2}}) = |z|(\cos(\frac{3\pi}{4}) + i \sin(\frac{3\pi}{4})) = e \cdot e^{i\frac{3\pi}{4}} \). We get

\[\log(z) = \ln|z| + i \arg(z) = 1 + i \left(\frac{3\pi}{4} + 2k\pi\right), \quad k \in \mathbb{Z}. \]

Since \(\frac{3\pi}{4} \in (-\pi, \pi] \), we have \(\text{Arg}(z) = \frac{3\pi}{4} \) and therefore

\[\text{Log}(z) = 1 + i\frac{3\pi}{4}. \]

Exercise 3. [3 points] Let \(z \in \mathbb{C} \). Prove that \(\overline{\text{exp}(z)} = \text{exp}(\overline{z}) \).

Solution. Write \(z = x + iy \), with \(x, y \in \mathbb{R} \). Then

\[\overline{\text{exp}(z)} = e^{\overline{x}} \cdot e^{\overline{y}} = e^x \cdot e^{iy}. \]
Since \(e^x \) is real, we have \(\overline{e^x} = e^x \). On the other hand, since \(e^{iy} = \cos y + i \sin y \), we have \(\overline{e^{iy}} = \cos(-y) + i \sin(-y) = e^{-iy} \) (This is a useful formula!). So we get
\[
\overline{\exp(z)} = e^x \cdot e^{-iy} = e^{x-iy} = \exp(\overline{z}).
\]

Exercise 4. [4 points] Solve the equation \(e^{2z} + 1 = i \).

Solution. Let \(z = x + iy \in \mathbb{C} \). We have
\[
e^{2z} + 1 = i \iff e^{2z} = -1 + i
\]
\[
\iff e^{2x} \cdot e^{-2yi} = -1 + i
\]
\[
\iff 2x = \ln \sqrt{2} \iff 2y = \frac{3\pi}{4} + 2k\pi, \text{ for some } k \in \mathbb{Z}
\]
\[
\iff \begin{cases} x = \frac{1}{2} \ln 2 \\ y = \frac{3\pi}{8} + k\pi, \text{ for some } k \in \mathbb{Z} \end{cases}
\]
\[
\iff z = \frac{1}{4} \ln 2 + i \left(\frac{3\pi}{8} + k\pi \right), \text{ for some } k \in \mathbb{Z}.
\]

So the set of solutions to the equation is \(\{ \frac{1}{4} \ln 2 + i \left(\frac{3\pi}{8} + k\pi \right) : k \in \mathbb{Z} \} \).

Exercise 5. [6 points] Prove that

1. \(\log((1 - i)^2) = 2 \log(1 - i) \);
2. \(\log((1 + i\sqrt{3})^4) \neq 4 \log(1 + i\sqrt{3}) \).

Solution.

1. First note that \(1 - i = \sqrt{2} e^{-i\frac{\pi}{4}} \), where \(-\frac{\pi}{4}\) is its principal argument. So we have
\[
\log(1 - i) = \ln \sqrt{2} - i\frac{\pi}{4} = \frac{1}{2} \left(\ln 2 - i\frac{\pi}{2} \right).
\]
Moreover, \((1 - i)^2 = (\sqrt{2} e^{-i\frac{\pi}{4}})^2 = 2e^{-i\frac{\pi}{2}}\), where \(-\frac{\pi}{2}\) is its principal argument. So we have
\[
\log((1 - i)^2) = \ln 2 - i\frac{\pi}{2}.
\]
This proves that \(\log((1 - i)^2) = 2 \log(1 - i) \).

2. First note that \(1 + i\sqrt{3} = 2\left(\frac{1}{2} + i\frac{\sqrt{3}}{2} \right) = 2e^{i\frac{\pi}{3}} \), where \(\frac{\pi}{3} \) is its principal argument. Therefore,
\[
\log(1 + i\sqrt{3}) = \ln 2 + i\frac{\pi}{3}
\]
Moreover, \((1 + i\sqrt{3})^4 = 2^4 e^{i\frac{4\pi}{3}} = 2^4 e^{-i\frac{2\pi}{3}}\), where \(-\frac{2\pi}{3}\) is its principal argument. So we get
\[
\log((1 + i\sqrt{3})^4) = \ln(2^4) - i\frac{2\pi}{3} = 4 \ln 2 - i\frac{2\pi}{3} \neq 4 \ln 2 + i\frac{4\pi}{3} = 4 \log(1 + i\sqrt{3}).
\]

Exercise 6. [7 points] Recall that for any \(z \neq 0 \), we define \(\log(z) = \ln |z| + i \arg(z) \). Let \(D = \{ z \in \mathbb{C} : \text{Im}(z) > 0 \} \).
(1) Using a geometric argument, express Arg(z) for \(z = x + iy \in D \) in terms of \(\cos^{-1}, x \) and \(y \). Explain why this formula does not work for all \(z \neq 0 \).

(2) Using the theorem of Section 23, prove that Log is analytic on \(D \) and that \(\text{Log}'(z) = 1/z \) for any \(z \in D \).

Reminder: \(\frac{d}{dt} \cos^{-1}(t) = -\frac{1}{\sqrt{1 - t^2}} \).

Solution.

(1) Let \(z \neq 0 \). Write \(z = x + iy = re^{i\theta} \), with \(r > 0 \) and \(\theta \in (-\pi, \pi] \) (so that \(\theta = \text{Arg}(z) \)). Then \(x = r \cos \theta \) and therefore \(\cos \theta = \frac{x}{r} \) (this is always true).

Now assume that \(z \in D \). In that case \(\theta \in (0, \pi) \), so we have (because \(\cos: (0, \pi) \to (-1, 1) \) is bijective with inverse function \(\text{arccos} \))

\[
\cos \theta = \frac{x}{r} \iff \theta = \text{arccos} \frac{x}{r} \iff \text{Arg}(z) = \text{arccos} \left(\frac{x}{\sqrt{x^2 + y^2}} \right).
\]

This formula is not true if \(z \) is in the lower half plane, because then \(\theta \in (-\pi, 0) \), but the function \(\text{arccos} \) only takes values in \([0, \pi]\).

\[
\begin{align*}
\text{Log}(z) &= u(x, y) + iv(x, y) \\
u(x, y) &= \ln(\sqrt{x^2 + y^2}) = \frac{1}{2} \ln(x^2 + y^2) \\
v(x, y) &= \text{arccos} \left(\frac{x}{\sqrt{x^2 + y^2}} \right)
\end{align*}
\]

Note that \(u \) and \(v \) have partial derivatives everywhere in \(D \): for \(u \), note that \(x^2 + y^2 \) is always positive and \(\ln \) is differentiable on \((0, \infty)\), and for \(v \) note that, since \(x^2 + y^2 \) is always positive, \(x/\sqrt{x^2 + y^2} \) has partial derivatives and \(x/\sqrt{x^2 + y^2} \) takes values only in \((0, 1)\), where \(\text{arccos} \) is differentiable. Since \(D \) is open, for any point in \(D \), the partial derivatives exist in a neighborhood of this point (because there is a neighborhood of this point included in \(D \)).

The partial derivatives of \(u \) are

\[
\begin{align*}
u_x(x, y) &= \frac{1}{2} \frac{2x}{x^2 + y^2} = \frac{x}{x^2 + y^2} \\
u_y(x, y) &= \frac{y}{x^2 + y^2}.
\end{align*}
\]
The partial derivatives of v are

\begin{align*}
v_x(x, y) &= \arccos\left(\frac{x}{\sqrt{x^2 + y^2}}\right) \cdot \frac{\partial}{\partial x} \left(\frac{x}{\sqrt{x^2 + y^2}}\right) = -\frac{1}{\sqrt{1 - \frac{x^2}{x^2 + y^2}}} \cdot \frac{\sqrt{x^2 + y^2} - x \frac{2x}{2\sqrt{x^2 + y^2}}}{x^2 + y^2} \\
&= -\frac{1}{\sqrt{\frac{y^2}{x^2 + y^2}}} \cdot \frac{(x^2 + y^2) - x^2}{(x^2 + y^2)^{3/2}} = -\frac{\sqrt{x^2 + y^2} - y^2}{y (x^2 + y^2)^{3/2}} = -\frac{y}{x^2 + y^2}
\end{align*}

\begin{align*}
v_y(x, y) &= \arccos\left(\frac{x}{\sqrt{x^2 + y^2}}\right) \cdot \frac{\partial}{\partial y} \left(\frac{x}{\sqrt{x^2 + y^2}}\right) = -\frac{1}{\sqrt{1 - \frac{x^2}{x^2 + y^2}}} \cdot \frac{-x \frac{2y}{2\sqrt{x^2 + y^2}}}{x^2 + y^2} \\
&= \frac{1}{\sqrt{\frac{y^2}{x^2 + y^2}}} \cdot \frac{x y}{(x^2 + y^2)^{3/2}} = \frac{x}{x^2 + y^2}.
\end{align*}

Therefore, note that the Cauchy-Riemann Equations are satisfied at any point in D. Finally note that these partial derivatives are continuous on D, because $x^2 + y^2$ is never 0. So, we can apply the theorem in Section 23 to conclude that Log is differentiable on D. Moreover,

\begin{align*}
\text{Log}'(z) &= u_x(x, y) + iv_x(x, y) = \frac{x}{x^2 + y^2} + i \frac{-y}{x^2 + y^2} = \frac{x - iy}{|z|^2} = \frac{\pi}{z} = \frac{1}{z}.
\end{align*}