Complex analysis, homework 4 due February 15th.

Exercise 1.[8 points] For the following functions, say at which points they are differentiable and find their derivatives. Show your steps.

(1) \(f(z) = \frac{z^2}{iz + 1} \)

(2) \(f(z) = z(z^2 + iz)^5 \)

Exercise 2.[5 points] Let \(z_0 \in \mathbb{C} \). Let \(f \) be a function differentiable at \(z_0 \). For any \(z \in \mathbb{C} \) such that \(f(z) \) is defined, we set \(g(z) = f(z) \).

Prove that \(g \) is differentiable at \(z_0 \) and express \(g'(z_0) \) in terms of \(f'(z_0) \).

Exercise 3.[8 points] Let \(f(z) = z \text{Im}(z) \) for \(z \in \mathbb{C} \). Find the points \(z \in \mathbb{C} \) where \(f \) is differentiable and find its derivative \(f'(z) \) at these points. For all the other points in the complex plane, prove that \(f \) is not differentiable at these points.

Exercise 4.[9 points] Let \(f \) be a function differentiable on \(\mathbb{C} \).

(1) Prove that if \(\text{Re}(f) \) is constant on \(\mathbb{C} \), then \(f \) is constant on \(\mathbb{C} \).

(2) Prove that if \(|f| \) is constant on \(\mathbb{C} \), then \(f \) is constant on \(\mathbb{C} \).

Hint: Use the Cauchy-Riemann equations. You can use the following fact: if a real-valued function on \(\mathbb{R}^2 \) has its both partial derivatives that are zero on \(\mathbb{R}^2 \), then this function is constant on \(\mathbb{R}^2 \). For (b), you can start by squaring the modulus and differentiate either with respect to \(x \) or with respect to \(y \).