Probability, final exam practice.

The final will consist in eight such exercises.
Exercise 1. Evaluate the following explicitely:

$$
\begin{aligned}
& \sum_{k=1}^{364} \frac{365!}{k!(365-k)!} \frac{1}{7^{k}}, \\
& \sum_{a+b+c+d=12} \frac{13!}{a!b!c!d!},
\end{aligned}
$$

where the above sum is over all nonnegative integers a, b, c, d (such that $a+b+c+d=$ 12).

Exercise 2. The forecast predicts either a sunny day (event S) or a rainy day (event S^{c}), and I will either wear flip flops (event F) or not (event F^{c}). Assume that 70% of the days are sunny and that I am " 80% accurate" in the sense that $\mathbb{P}(F \mid S)=\mathbb{P}\left(F^{c} \mid S^{c}\right)=8 / 10$.

Find the probability that it is a sunny day, given that I wear flip flops.
Exercise 3. It is raining. I can see exactly a billion independent droplets fall on the ground. Each droplet has probability $1 / 10^{8}$ to fall on my head. Let X be the number of droplets falling on my head. What is exactly $\mathbb{E}(X)$? What is approximately $\operatorname{Var}(X)$. What is approximately $\mathbb{P}(X>100)$?

Exercise 4. Nine people enter a coffee shop. Each of them will order a cappuccino, independently of the others, with probability $1 / 4$. Let X be the number of ordered cappuccinos. Compute the following: $\mathbb{E}(X)$, and the variance of X.

Exercise 5. Let X be a continuous random variable with density $c x^{2}$ on $[0,1], c$ on $[1,2]$, and 0 otherwise. Find c. Calculate the expectation of X and its cummulative distribution function.

Exercise 6. Let X and Y have joint density $\frac{12}{7} x(x+y)$ on $0 \leq x, y \leq 1$. Calculate the density of X. Calculate the density of X knowing $Y=y$. What is the covariance between X and Y ?

Exercise 7. Let X be a Gaussian random variable with mean 1 and variance 2, and Y an independent Gaussian random variable with mean 2 and variance 3 . What type of random variable is $X+Y$? What is its density?

Exercise 8. Let X be an exponential random variable with parameter 1 and Y an independent exponential random variable with parameter 2. What type of random variable is $\min (X, Y)$? With which parameter? Prove it.

Exercise 9. Let U be a uniform random variable on $[0,1]$. What type of random variable is $1 / U$? Prove it.

Exercise 11. Let $U_{1}, \ldots, U_{n}, \ldots$ be iid uniform random variable on $[0,1]$. State the weak law of large numbers for their sum. What is the limiting probability that $\sum_{1}^{n} U_{1}>2 n / 3$ as $n \rightarrow \infty$?

Exercise 11. Let $U_{1}, \ldots, U_{n}, \ldots$ be iid uniform random variable on $[0,1]$. State the central limit theorem for their sum. What is the limiting probability that $\sum_{1}^{n} U_{1}-n / 2>4 \sqrt{n}$ as $n \rightarrow \infty$?

