Probability, homework 10, due December 6th.

Some exercises are from A first course in probability, ninth edition, by Sheldon Ross.

Exercise 1 A die is continually rolled until the total sum of all rolls exceeds 300 . Approximate the probability that at least 80 rolls are necessary.

Exercise 2 An insurance company has 10,000 automobile policyholders. The expected yearly claim per policyholder is 240 USD, with a standard deviation of 800 USD. Approximate the probability that the total yearly claim exceeds 2.7 million USD.

Exercise 3 Suppose that a fair die is rolled 100 times. Let X_{i} be the value obtained on the ith roll. Compute an approximation for

$$
\mathbb{P}\left(\prod_{i=1}^{100} X_{i} \leq a^{100}\right), \quad 1<a<6 .
$$

Exercise 4 Let the X_{ℓ} 's be i.i.d. real random variables, uniform on $[0,1]$. What is the limit of $\left(X_{1}^{3}+\cdots+X_{n}^{3}\right) /\left(X_{1}+\cdots+X_{n}\right)$ as $n \rightarrow \infty$? In which sense?

Exercise 5. Let $\left(X_{i}\right)_{i \geq 1}$ be a sequence of independent random variables, with X_{i} uniform on $[-i, i]$. Let $S_{n}=X_{1}+\cdots+X_{n}$. Prove that $S_{n} / n^{3 / 2}$ converges in distribution and describe the limit.

