Probability, homework 6, due November 1st.

Exercise 1. Let X have a binomial distribution with parameters (p, n). Prove that X is even with probability

$$\frac{1}{2} \left(1 + (1 - 2p)^n \right).$$

Exercise 2. Let X, Y be independent random variables with positive integers values, with distribution

$$\mathbb{P}(X=i) = \mathbb{P}(Y=i) = \frac{1}{2^i}, i \in \mathbb{N}^*.$$

Find the following proabilitities.

(i) $\mathbb{P}(\max(X, Y) \ge i)$. (ii) $\mathbb{P}(X = Y)$. (iii) $\mathbb{P}(X > Y)$.

Exercise 3. Suppose a distribution function F of a random variable X is given by

$$F(x) = \frac{1}{4}\mathbb{1}_{[0,\infty)}(x) + \frac{1}{2}\mathbb{1}_{[1,\infty)}(x) + \frac{1}{4}\mathbb{1}_{[2,\infty)}(x)$$

What is the probability that X belongs to the following sets, (-1/2, 1/2), (-1/2, 3/2), (2/3, 5/2), $(3, \infty)$?

Exercise 4. Let X be uniformly distributed on [0,1] and $\lambda > 0$. Show that $-\lambda^{-1} \log X$ has the same distribution as an exponential random variable with parameter λ .

Exercise 5. Let X be a standard Gaussian random variable. What is the density of $1/X^2$?

Exercise 6. Let X be a positive random variable with density $e^{-x} \mathbb{1}_{x>0}$ (the exponential distribution). What is the density of 1/(1+X)?

Exercise 7 Let X be a standard Gaussian random variable. Prove that for any $n \in \mathbb{N}^*$, $\mathbb{E}(X^{2n+1}) = 0$ and $\mathbb{E}(X^{2n}) = \frac{(2n)!}{2nn!}$.

Exercise 8. The goal of this exercise is to prove that any function, continuous on an interval of \mathbb{R} , can be approximated by polynomials, arbitrarily close for the L^{∞} norm (this is the Bernstein-Weierstrass theorem). Let f be a continuous function on [0, 1]. The *n*-th Bernstein polynomial is

$$B_n(x) = \sum_{k=0}^n \binom{n}{k} x^k (1-x)^{n-k} f\left(\frac{k}{n}\right).$$

- (i) Let $S_n(x) = B^{(n,x)}/n$, where $B^{(n,x)}$ is a binomial random variable with parameters n and x: $B^{(n,x)} = \sum_{\ell=1}^{n} X_i$ where the X_i 's are independent and $\mathbb{P}(X_i = 1) = x$, $\mathbb{P}(X_i = 0) = 1 x$. Prove that $B_n(x) = \mathbb{E}(f(S_n(x)))$.
- (ii) Prove that $||B_n f||_{L^{\infty}([0,1])} \to 0$ as $n \to \infty$ and conclude.