Probability, homework 6, due November 1st.

Exercise 1. Let X have a binomial distribution with parameters (p, n). Prove that X is even with probability

$$
\frac{1}{2}\left(1+(1-2 p)^{n}\right)
$$

Exercise 2. Let X, Y be independent random variables with positive integers values, with distribution

$$
\mathbb{P}(X=i)=\mathbb{P}(Y=i)=\frac{1}{2^{i}}, i \in \mathbb{N}^{*}
$$

Find the following proabilitities.
(i) $\mathbb{P}(\max (X, Y) \geq i)$.
(ii) $\mathbb{P}(X=Y)$.
(iii) $\mathbb{P}(X>Y)$.

Exercise 3. Suppose a distribution function F of a random variable X is given by

$$
F(x)=\frac{1}{4} \mathbb{1}_{[0, \infty)}(x)+\frac{1}{2} \mathbb{1}_{[1, \infty)}(x)+\frac{1}{4} \mathbb{1}_{[2, \infty)}(x)
$$

What is the probability that X belongs to the following sets, $(-1 / 2,1 / 2),(-1 / 2,3 / 2)$, $(2 / 3,5 / 2),(3, \infty) ?$

Exercise 4. Let X be uniformly distributed on $[0,1]$ and $\lambda>0$. Show that $-\lambda^{-1} \log X$ has the same distribution as an exponential random variable with parameter λ.

Exercise 5. Let X be a standard Gaussian random variable. What is the density of $1 / X^{2}$?

Exercise 6. Let X be a positive random variable with density $e^{-x} \mathbb{1}_{x>0}$ (the exponential distribution). What is the density of $1 /(1+X)$?

Exercise 7 Let X be a standard Gaussian random variable. Prove that for any $n \in \mathbb{N}^{*}, \mathbb{E}\left(X^{2 n+1}\right)=0$ and $\mathbb{E}\left(X^{2 n}\right)=\frac{(2 n)!}{2^{n} n!}$.

Exercise 8. The goal of this exercise is to prove that any function, continuous on an interval of \mathbb{R}, can be approximated by polynomials, arbitrarily close for the L^{∞} norm (this is the Bernstein-Weierstrass theorem). Let f be a continuous function on $[0,1]$. The n-th Bernstein polynomial is

$$
B_{n}(x)=\sum_{k=0}^{n}\binom{n}{k} x^{k}(1-x)^{n-k} f\left(\frac{k}{n}\right)
$$

(i) Let $S_{n}(x)=B^{(n, x)} / n$, where $B^{(n, x)}$ is a binomial random variable with parameters n and $x: B^{(n, x)}=\sum_{\ell=1}^{n} X_{i}$ where the X_{i} 's are independent and $\mathbb{P}\left(X_{i}=1\right)=x, \mathbb{P}\left(X_{i}=0\right)=1-x$. Prove that $B_{n}(x)=\mathbb{E}\left(f\left(S_{n}(x)\right)\right)$.
(ii) Prove that $\left\|B_{n}-f\right\|_{L^{\infty}([0,1])} \rightarrow 0$ as $n \rightarrow \infty$ and conclude.

